Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Int Immunopharmacol ; 125(Pt A): 111104, 2023 Dec.
Article En | MEDLINE | ID: mdl-37897949

Hypertensive nephropathy (HTN) is one of the leading causes of end-stage renal disease, yet the molecular mechanisms are still unknown. To explore novel mechanisms and gene targets for HTN, the gene expression profiles of renal biopsy samples obtained from 2 healthy living donor controls and 5 HTN patients were determined by single-cell RNA sequencing. Key hub genes expression were validated by the Nephroseq v5 platform. The HTN endothelium upregulated cellular adhesion genes (ICAM2 and CEACAM1), inflammatory genes (ETS2 and IFI6) and apoptosis related genes (CNN3). Proximal tubules in HTN highly expressed hub genes including BBOX1, TPM1, TMSB10, SDC4, and NUP58, which might be potential novel targets for proximal tubular injury. The upregulated genes in tubules of HTN were mainly participating in inflammatory signatures including IFN-γ signature, NF-κB signaling, IL-12 signaling and Wnt signaling pathway. Receptor-ligand interaction analysis indicated potential cell-cell crosstalk between endothelial cells or mesangial cells with other renal resident cells in HTN. Together, our data identify a distinct cell-specific gene expression profile, pathogenic inflammatory signaling and potential cell-cell communications between endothelial cells or mesangial cells with other renal resident cells in HTN. These findings may provide a promising novel landscape for mechanisms and treatment of human HTN.


Hypertension, Renal , Nephritis , Humans , Transcriptome , Endothelial Cells , Hypertension, Renal/genetics
2.
Chin Med J (Engl) ; 136(10): 1177-1187, 2023 May 20.
Article En | MEDLINE | ID: mdl-37083129

BACKGROUND: Ischemic acute kidney injury (AKI) is a common syndrome associated with considerable mortality and healthcare costs. Up to now, the underlying pathogenesis of ischemic AKI remains incompletely understood, and specific strategies for early diagnosis and treatment of ischemic AKI are still lacking. Here, this study aimed to define the transcriptomic landscape of AKI patients through single-cell RNA sequencing (scRNA-seq) analysis in kidneys. METHODS: In this study, scRNA-seq technology was applied to kidneys from two ischemic AKI patients, and three human public scRNA-seq datasets were collected as controls. Differentially expressed genes (DEGs) and cell clusters of kidneys were determined. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, as well as the ligand-receptor interaction between cells, were performed. We also validated several DEGs expression in kidneys from human ischemic AKI and ischemia/reperfusion (I/R) injury induced AKI mice through immunohistochemistry staining. RESULTS: 15 distinct cell clusters were determined in kidney from subjects of ischemic AKI and control. The injured proximal tubules (PT) displayed a proapoptotic and proinflammatory phenotype. PT cells of ischemic AKI had up-regulation of novel pro-apoptotic genes including USP47 , RASSF4 , EBAG9 , IER3 , SASH1 , SEPTIN7 , and NUB1 , which have not been reported in ischemic AKI previously. Several hub genes were validated in kidneys from human AKI and renal I/R injury mice, respectively. Furthermore, PT highly expressed DEGs enriched in endoplasmic reticulum stress, autophagy, and retinoic acid-inducible gene I (RIG-I) signaling. DEGs overexpressed in other tubular cells were primarily enriched in nucleotide-binding and oligomerization domain (NOD)-like receptor signaling, estrogen signaling, interleukin (IL)-12 signaling, and IL-17 signaling. Overexpressed genes in kidney-resident immune cells including macrophages, natural killer T (NKT) cells, monocytes, and dendritic cells were associated with leukocyte activation, chemotaxis, cell adhesion, and complement activation. In addition, the ligand-receptor interactions analysis revealed prominent communications between macrophages and monocytes with other cells in the process of ischemic AKI. CONCLUSION: Together, this study reveals distinct cell-specific transcriptomic atlas of kidney in ischemic AKI patients, altered signaling pathways, and potential cell-cell crosstalk in the development of AKI. These data reveal new insights into the pathogenesis and potential therapeutic strategies in ischemic AKI.


Acute Kidney Injury , Reperfusion Injury , Humans , Mice , Animals , Transcriptome/genetics , Ligands , Kidney/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Ischemia/genetics , Ischemia/metabolism , Reperfusion Injury/metabolism , Sequence Analysis, RNA , Adaptor Proteins, Signal Transducing/metabolism , Tumor Suppressor Proteins/metabolism
3.
Front Med (Lausanne) ; 9: 869284, 2022.
Article En | MEDLINE | ID: mdl-35935760

To date, the pathogenesis of hepatitis B virus (HBV)-associated membranous nephropathy (MN) remains elusive. This study aimed to decipher the etiopathogenesis of HBV-associated MN by performing single-cell RNA sequencing (scRNA-seq) of kidney biopsy specimens from a patient with HBV-associated MN and two healthy individuals. We generated 4,114 intrarenal single-cell transcriptomes from the HBV-associated MN patient by scRNA-seq. Compared to healthy individuals, podocytes in the HBV-associated MN patient showed an increased expression of extracellular matrix formation-related genes, including HSPA5, CTGF, and EDIL3. Kidney endothelial cells (ECs) in the HBV-associated MN were enriched in inflammatory pathways, including NF-kappa B signaling, IL-17 signaling, TNF signaling and NOD-like receptor signaling. Gene ontology (GO) functional enrichment analysis and Gene Set Variation Analysis (GSVA) further revealed that differentially expressed genes (DEGs) of ECs from the HBV-associated MN patients were enriched in apoptotic signaling pathway, response to cytokine and leukocyte cell-cell adhesion. The up-regulated DEGs in glomerular ECs of HBV-associated MN patients were involved in biological processes such as viral gene expression, and protein targeting to endoplasmic reticulum. We further verified that the overexpressed genes in ECs from HBV-associated MN were mainly enriched in regulation of protein targeting to endoplasmic reticulum, exocytosis, viral gene expression, IL-6 and IL-1 secretion when compared with anti-phospholipase A2 receptor (PLA2R)-positive idiopathic membranous nephropathy (IMN). The receptor-ligand crosstalk analysis revealed potential interactions between endothelial cells and other cells in HBV-associated-MN. These results offer new insight into the pathogenesis of HBV-associated MN and may identify new therapeutic targets for HBV-associated MN.

...