Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; 71(2): 400-409, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37535480

RESUMEN

OBJECTIVE: Electroencephalography (EEG) with high time-resolution allows for recording dynamic cortical activity during walking and provides new insight into the underlying pathophysiology of gait impairments in PD. However, traditional gait-phase-specific EEG analysis only measures the brain activities in the isolated gait phase, but neglects the between-gait-phase interactions as well as the whole-gait-cycle characteristics, and therefore is unable to effectively reflect the abnormal cortical gait control. METHODS: In this study, we introduced three whole-gait-cycle measures of intra-stride EEG activity (i.e., mean desynchronization, amplitude of fluctuations, and coupling to the gait phase), and investigated their abnormalities in PD and relationships with gait impairments, which were further compared with the traditional gait-phase-specific measures. RESULTS: Compared with healthy controls, PD patients showed overwhelming stronger desynchronizations (ERD) across the whole gait cycle in θ, α and low-ß bands, implying a cortical compensatory strategy in response to the low efficiency of the motor network. Patients also exhibited weaker intra-stride ERD fluctuations in the central area in α and low-ß bands, with reduced amplitude and less coupling to the gait phase, which were correlated with gait impairments in walking speed, gait rhythm and walking stability. However, gait-phase-specific EEG measures did not show any significant correlation with gait impairments in PD. CONCLUSION: Our results demonstrated the efficiency of whole-gait-cycle EEG measures in characterizing the abnormal cortical gait control, and for the first time, associated gait impairments with weak intra-stride electrocortical fluctuations. SIGNIFICANCE: The findings may shed light on the development of cortical-targeted interventions for PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , Marcha/fisiología , Caminata/fisiología , Electroencefalografía , Velocidad al Caminar
2.
Brain Res ; 1822: 148608, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778648

RESUMEN

The central leptin signaling system has been found to facilitate breathing and is linked to obesity-related hypoventilation. Activation of leptin signaling in the nucleus tractus solitarii (NTS) and retrotrapezoid nucleus (RTN) enhances respiratory drive. In this study, we investigated how medullary leptin signaling contributes to hypoventilation and whether respective deletion of SOCS3 in the NTS and RTN could mitigate hypoventilation in diet-induced obesity (DIO) male mice. Our findings revealed a decrease in the number of CO2-activated NTS neurons and downregulation of acid-sensing ion channels in DIO mice compared to lean control mice. Moreover, NTS leptin signaling was disrupted, as evidenced by the downregulation of phosphorylated STAT3 and the upregulation of SOCS3 in DIO mice. Importantly, deleting SOCS3 in the NTS and RTN significantly improved the diminished hypercapnic ventilatory response in DIO mice. In conclusion, our study suggests that disrupted medullary leptin signaling contributes to obesity-related hypoventilation, and inhibiting the upregulated SOCS3 in the NTS and RTN can alleviate this condition.


Asunto(s)
Hipoventilación , Leptina , Núcleo Solitario , Proteína 3 Supresora de la Señalización de Citocinas , Animales , Masculino , Ratones , Dieta , Hipoventilación/genética , Obesidad/complicaciones , Núcleo Solitario/fisiología , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
3.
Int J Biol Macromol ; 258(Pt 1): 128886, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141698

RESUMEN

Cardanol (CD) is used as a reactive compatibilizer, and blended with polylactic acid (PLA) and polypropylene carbonate (PPC) resin (70/30(w/w)) to obtain a series of PLA/PPC/CD blends. The systematic study was conducted on the thermal properties, optical properties, rheological properties, mechanical properties, and microscopic morphology of the blend, by varying amounts of CD added to the blends. A detailed explanation and comprehensive analysis of the reaction mechanism between CD and PLA/PPC have been made. The study found that CD acts as a "bridge" between the PLA and PPC, forming the structure of a block copolymer (PLA-b-CD-b-PPC), and the copolymer can greatly improve the compatibility of PLA and PPC. When the amount of CD reaches 8 wt%, only one Tg is observed in the blend, simultaneously, PLA/PPC has already transitioned from a partially compatible system to a completely compatible system. At the same time, the addition of CD does not have any negative impact on the thermal stability of the PLA/PPC blend under processing temperature conditions, and the thermal stability of the PLA/PPC/CD blends can even be improved under extreme conditions. In addition, the addition of CD allows the PLA/PPC/CD blends to maintain a high light transmittance while reducing the opacity of the blend (the light transmittance remains above 92 %, and the opacity is reduced from 37 % to about 24 %), demonstrating excellent optical properties. Moreover, the elongation at break and impact strength of the PLA/PPC/CD blend both show a trend of first increasing and then decreasing with the increase of CD amount. When the CD amount varies within the range of 6- 8 wt%, the blends undergoes a brittle-ductile transition, and its toughness is greatly improved while the rigidity can also meet practical needs. When the amount of CD in the system increases to 12 wt%, the toughness of the blend reaches its peak, and its elongation at break and impact strength reach 513.24 % and 9211.5 J/m2 respectively (increased to 2442.84 % and 270.73 % of the PLA/PPC blend). Concurrently, the fracture surface of the blend exhibits large-scale plastic flow in the direction of the applied force, with marked shear yield phenomena, showing obvious characteristics of tough fracture.


Asunto(s)
Fenoles , Poliésteres , Polipropilenos , Microscopía Electrónica de Rastreo , Poliésteres/química
4.
Nat Commun ; 14(1): 2717, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169769

RESUMEN

Developing efficient noble-metal-free surface-enhanced Raman scattering (SERS) substrates and unveiling the underlying mechanism is crucial for ultrasensitive molecular sensing. Herein, we report a facile synthesis of mixed-dimensional heterostructures via oxygen plasma treatments of two-dimensional (2D) materials. As a proof-of-concept, 1D/2D WO3-x/WSe2 heterostructures with good controllability and reproducibility are synthesized, in which 1D WO3-x nanowire patterns are laterally arranged along the three-fold symmetric directions of 2D WSe2. The WO3-x/WSe2 heterostructures exhibited high molecular sensitivity, with a limit of detection of 5 × 10-18 M and an enhancement factor of 5.0 × 1011 for methylene blue molecules, even in mixed solutions. We associate the ultrasensitive performance to the efficient charge transfer induced by the unique structures of 1D WO3-x nanowires and the effective interlayer coupling of the heterostructures. We observed a charge transfer timescale of around 1.0 picosecond via ultrafast transient spectroscopy. Our work provides an alternative strategy for the synthesis of 1D nanostructures from 2D materials and offers insights on the role of ultrafast charge transfer mechanisms in plasmon-free SERS-based molecular sensing.

5.
Angew Chem Int Ed Engl ; 61(36): e202208281, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35821569

RESUMEN

We have determined the complex atomic structure of high-temperature α-Ag9 GaTe6 phase with a hexagonal lattice (P63 mc space group, a=b=8.2766 Å, c=13.4349 Å). The structure has outer [GaTe4 ]5- tetrahedrons and inner [Ag9 Te2 ]5+ clusters. All of the Ag ions are disorderly distributed in the lattice. Seven types of the Ag atoms constitute the cage-like [Ag9 Te2 ]5+ clusters. The highly disordered Ag ions vibrate in-harmonically, producing strong coupling between low frequency optical phonons and acoustic phonons. This in conjunction with a low sound velocity of 1354 m s-1 leads to an ultralow thermal conductivity of 0.20 W m-1 K-1 at 673 K. Meanwhile, the deficiency of Ga in Ag9 Ga1-x Te6 compounds effectively optimizes the electronic transport properties. Ag9 Ga0.91 Te6 attains a highest power factor of 0.40 mW m-1 K-2 at 673 K. All these contribute to a much-improved ZT value of 1.13 at 623 K for Ag9 Ga0.95 Te6 , which is 41 % higher than that of the pristine Ag9 GaTe6 sample.

6.
J Integr Complement Med ; 28(5): 436-444, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35275751

RESUMEN

Objectives: In China, Xingnao Kaiqiao (XNKQ) acupuncture has been widely used for stroke treatment. However, its electrophysiological mechanism remains unclear. Hence, this study aims to study how XNKQ acupuncture modulates brain rhythm oscillations of stroke patients, and investigate its correlation with stroke recovery. Design: Randomized control trial. Subjects: Twenty (sub)acute ischemic stroke patients were enrolled and randomly assigned to two groups (an acupuncture group [AG] [n = 10] and a control group [CG] [n = 10]), and four patients (two patients in each group) dropped out of the study. Interventions: All patients received conventional treatments, and the patients in AG received additional XNKQ acupuncture treatment once a day for 10 consecutive days. Outcome measures: Before treatment, 14 days after, and 30 days after treatment onset, their movement impairments and neurologic deficits were measured using the National Institute of Health Stroke Scale (NIHSS), the Fugl-Meyer (FM) Scale, the Modified Rankin Scale (mRS), and the Modified Barthel Index (MBI), and their electroencephalogram data were recorded. Results: Compared with the CG, the AG showed more improvement in FM scores (p = 0.02), as well as decreased relative delta power and increased relative alpha power after 2 weeks' treatment. The decrease of the relative delta power and the increase of the relative alpha power in the ipsilesional frontal area were significantly correlated with the FM improvement (F5, F7, FC1, and Fz electrodes, all |r| > 0.517, p < 0.040). Conclusions: The curative effect of XNKQ acupuncture related to its electrophysiological modulation. This study was registered at the Chinese Clinical Trial Registry (ChiCTR2000038560).


Asunto(s)
Terapia por Acupuntura , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Encéfalo , Humanos , Modalidades de Fisioterapia , Accidente Cerebrovascular/terapia
7.
ACS Appl Mater Interfaces ; 14(2): 3057-3065, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985852

RESUMEN

Modulation of the microstructure and configurational entropy tuning are the core stratagem for improving thermoelectric performance. However, the correlation of evolution among the preparation methods, chemical composition, structural defects, configurational entropy, and thermoelectric properties is still unclear. Herein, two series of AgSbTe2-based compounds were synthesized by an equilibrium melting-slow-cooling method and a nonequilibrium melting-quenching-spark plasma sintering (SPS) method, respectively. The equilibrium method results in coarse grains with a size of >300 µm in the samples and a lower defect concentration, leading to higher carrier mobility of 10.66 cm2 V-1 s-1 for (Ag2Te)0.41(Sb2Te3)0.59 compared to the sample synthesized by nonequilibrium preparation of 1.83 cm2 V-1 s-1. Moreover, tuning the chemical composition of nonstoichiometric AgSbTe2 effectively improves the configurational entropy and creates a large number of cation vacancies, which evolve into dense dislocations in the samples. Owing to all of these in conjunction with the strong inharmonic vibration of lattice, an ultralow thermal conductivity of 0.51 W m-1 K-1 at room temperature is achieved for the (Ag2Te)0.42(Sb2Te3)0.58 sample synthesized by the equilibrium preparation method. Due to the enhanced carrier mobility, optimized carrier concentration, and low thermal conductivity, the (Ag2Te)0.42(Sb2Te3)0.58 sample synthesized by the equilibrium preparation method possesses the highest ZT of 1.04 at 500 K, more than 60% higher than 0.64 at 500 K of the same composition synthesized by nonequilibrium preparation.

8.
Adv Mater ; 34(5): e2105410, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34787336

RESUMEN

Noble-metal-free, durable, and high-efficiency electrocatalysts for oxygen reduction and evolution reaction (ORR/OER) are vital for rechargeable Zn-air batteries (ZABs). Herein, a flexible and free-standing carbon fiber membrane immobilized with atomically dispersed Fe-N4 /C catalysts (Fe/SNCFs-NH3 ) is synthesized and used as air cathode for ZABs. The intertwined fibers with hierarchical nanopores facilitate the gas transportation, electrolyte infiltration and electron transfer. The large specific surface area exposes a high concentration of Fe-N4 /C sites embedded in the carbon matrix. Modulation of local atomic configurations by sulfur doping in Fe/SNCFs-NH3 catalyst leads to excellent ORR and enhanced OER activities. The as-synthesized Fe/SNCFs-NH3 catalyst demonstrates a positive half-wave potential of 0.89 V and a small Tafel slope of 70.82 mV dec-1 , outperforming the commercial Pt/C (0.86 V/94.74 mV dec-1 ) and most reported M-Nx /C (M = Fe, Co, Ni) catalysts. Experimental characterizations and theoretical calculations uncover the crucial role of S doping in regulating ORR and OER activities. The liquid-state ZABs with Fe/SNCFs-NH3 catalyst as air cathode deliver a large peak power density of 255.84 mW cm-2 and long-term cycle durability over 1000 h. Solid-state ZAB shows stable cycling at various flat/bent/flat states, demonstrating great prospects in flexible electronic device applications.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120159, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34325169

RESUMEN

The terahertz (THz) absorption spectra of coumarin and 6-methylcoumarin have been investigated by terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.4 to 2.8 THz. Density functional theory (DFT) calculations, both with and without London force dispersion corrections, have been used for the assignment of the experimental THz spectra. To thoroughly interpret the spectrum information, we used potential energy distribution (PED) method to assign the vibrational modes of the absorption peaks, and identify the origin of the absorption peaks by electrostatic potential (ESP) and van der Waals (vdW) potential distribution analysis method. The results show that absorption peaks both for coumarin and 6-methylcoumarin are caused by electrostatic interaction in the lower frequency range, while vdW interaction in the higher frequency. Moreover, the potential energy distribution of electrostatic and vdW between them is basically the same, and it led to the similarity of THz spectra between coumarin and 6-MC. This work has demonstrated that using THz spectroscopy combined with DFT calculations is an effective way to analysis of intermolecular weak interactions and biomolecules with similar structures.


Asunto(s)
Espectroscopía de Terahertz , Cumarinas , Teoría Funcional de la Densidad , Vibración
10.
Chem Asian J ; 15(22): 3682-3695, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33052025

RESUMEN

Van der Waals solids with tunable band gaps and interfacial properties have been regarded as a class of promising active materials for electrocatalytic hydrogen evolution reaction (HER). However, due to the anisotropic features, their basal planes are usually electrochemically inert, only a few unsaturated edge atoms could serve as active centers to actuate H2 generation. Hence, material utilization and productivity efficiency are insufficient for practical applications. Recently, diverse defects have been confirmed to enable tailoring atomic configurations and electronic properties of van der Waals solids, thus triggering their superior catalytic activity of in-plane atoms while introducing high amount of new active sites. In this minireview, we summarize the state-of-the-art progress of defect engineering in van der Waals solids for HER, focusing in particular on their advantages in material modification and corresponding catalytic mechanisms. We also propose the challenges and perspectives of these catalytic materials in terms of both experimental synthesis and fundamental understanding of the defect structures.

11.
Neuroscience ; 432: 205-215, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32135235

RESUMEN

Rotational uncertainty refers to the fact that the reaction time (RT) for identifying an upright stimulus is longer when the target stimulus is presented in a sequence of stimuli with different orientations (SU condition) than upright stimuli only (AU condition). Up until now, the rotational uncertainty effect has been only revealed by behavior measures, and its underlying neural mechanism remains unclear. In this study, using the hand mental rotation paradigm and electroencephalogram (EEG) recordings, we aimed to find the electrophysiological evidences of the rotational uncertainty from event-related potential (ERP) and event-related (de)synchronization (ERS/ERD) measurements. Compared with the upright hand stimuli in AU condition, the same stimuli in SU condition took longer RT, elicited stronger α-ERD and ß-ERD, and evoked larger P100, P300 and the slow wave (SW) from -500 ms to -200 ms before response. In particular, the amplitude of SW difference (i.e., SWSU - SWAU) was negatively correlated with the extent of rotational uncertainty effect (i.e., RTSU - RTAU), with its source mainly in the right precentral and postcentral gyri, precuneus, and the left inferior parietal lobule. Our results suggested that identifying the upright hand stimuli in SU condition induced more activation of motor networks, and the rotational uncertainty influenced multiple cognitive processes from the early visual processing to the late mental rotation and judging phases. The results implied that in SU condition, subjects might maintain readiness for the next possible mental rotation immediately after the previous response, with more attention to the coming visual stimuli. Even for the upright stimuli, they might still prepare for the mental rotation, and even mentally rotate the stimuli in a minor angle.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Cognición , Humanos , Tiempo de Reacción , Incertidumbre
12.
Chem Asian J ; 15(7): 995-1013, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32073755

RESUMEN

Carbon is a simple, stable and popular element with many allotropes. The carbon family members include carbon dots, carbon nanotubes, carbon fibers, graphene, graphite, graphdiyne and hard carbon, etc. They can be divided into different dimensions, and their structures can be open and porous. Moreover, it is very interesting to dope them with other elements (metal or non-metal) or hybridize them with other materials to form composites. The elemental and structural characteristics offer us to explore their applications in energy, environment, bioscience, medicine, electronics and others. Among them, energy storage and conversion are extremely attractive, as advances in this area may improve our life quality and environment. Some energy devices will be included herein, such as lithium-ion batteries, lithium sulfur batteries, sodium-ion batteries, potassium-ion batteries, dual ion batteries, electrochemical capacitors, and others. Additionally, carbon-based electrocatalysts are also studied in hydrogen evolution reaction and carbon dioxide reduction reaction. However, there are still many challenges in the design and preparation of electrode and electrocatalytic materials. The research related to carbon materials for energy storage and conversion is extremely active, and this has motivated us to contribute with a roadmap on 'Carbon Materials in Energy Storage and Conversion'.

13.
Microorganisms ; 7(8)2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31344930

RESUMEN

Vacuolar proteinase A (Pep4p) is required for the post-translational precursor maturation of vacuolar proteinases in Saccharomyces cerevisiae, and important for protein turnover after oxidative damage. The presence of proteinase A in brewing yeast leads to the decline of beer foam stability, thus the deletion or inhibition of Pep4p is generally used. However, the influence of Pep4p deletion on cell metabolism in Saccharomyces cerevisiae is still unclear. Herein, we report the identification of differentially down-regulated metabolic proteins in the absence of Pep4p by a comparative proteomics approach. 2D-PAGE (two-dimensional polyacrylamide gel electrophoresis) presented that the number of significantly up-regulated spots (the Pep4p-deficient species versus the wild type) was 183, whereas the down-regulated spots numbered 111. Among them, 35 identified proteins were differentially down-regulated more than 10-fold in the Pep4p-deficient compared to the wild-type species. The data revealed that Pep4p was required for the synthesis and maturation of several glycolytic enzymes and stress proteins, including Eno2p, Fba1p, Pdc1p, Tpi1p, Ssa1, Hsp82p, and Trr1p. The transcription and post-translational modifications of glycolytic enzymes like Eno2p and Fba1p were sensitive to the absence of Pep4p; whereas the depletion of the pep4 gene had a negative impact on mitochondrial and other physiological functions. The finding of this study provides a systematic understanding that Pep4p may serve as a regulating factor for cell physiology and metabolic processes in S. cerevisiae under a nitrogen stress environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...