Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Sci Rep ; 14(1): 14336, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906938

RESUMEN

Fungal diseases, such as powdery mildew and rusts, significantly affect the quality and yield of wheat. Pyramiding diverse types of resistance genes into cultivars represents the preferred strategy to combat these diseases. Moreover, achieving collaborative improvement between diseases resistance, abiotic stress, quality, and agronomic and yield traits is difficult in genetic breeding. In this study, the wheat cultivar, Guinong 29 (GN29), showed high resistance to powdery mildew and stripe rust at both seedling and adult plant stages, and was susceptible to leaf rust at the seedling stage but slow resistance at the adult-plant stage. Meanwhile, it has elite agronomic and yield traits, indicating promising coordination ability among multiple diseases resistance and other key breeding traits. To determine the genetic basis of these elite traits, GN29 was tested with 113 molecular markers for 98 genes associated with diseases resistance, stress tolerance, quality, and adaptability. The results indicated that two powdery mildew resistance (Pm) genes, Pm2 and Pm21, confirmed the outstanding resistance to powdery mildew through genetic analysis, marker detection, genomic in situ hybridization (GISH), non-denaturing fluorescence in situ hybridization (ND-FISH), and homology-based cloning; the stripe rust resistance (Yr) gene Yr26 and leaf rust resistance (Lr) genes Lr1 and Lr46 conferred the stripe rust and slow leaf rust resistance in GN29, respectively. Meanwhile, GN29 carries dwarfing genes Rht-B1b and Rht-D1a, vernalization genes vrn-A1, vrn-B1, vrn-D1, and vrn-B3, which were consistent with the phenotypic traits in dwarf characteristic and semi-winter property; carries genes Dreb1 and Ta-CRT for stress tolerance to drought, salinity, low temperature, and abscisic acid (ABA), suggesting that GN29 may also have elite stress-tolerance ability; and carries two low-molecular-weight glutenin subunit genes Glu-B3b and Glu-B3bef which contributed to high baking quality. This study not only elucidated the genetic basis of the elite traits in GN29 but also verified the capability for harmonious improvement in both multiple diseases resistance and other comprehensive traits, offering valuable information for breeding breakthrough-resistant cultivars.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Enfermedades de las Plantas , Triticum , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Ascomicetos/patogenicidad , Ascomicetos/fisiología , Fitomejoramiento/métodos , Fenotipo , Basidiomycota/fisiología , Basidiomycota/patogenicidad , Genes de Plantas , Mapeo Cromosómico
2.
Adv Mater ; 36(30): e2402708, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38837440

RESUMEN

Emerging intrinsically flexible fully π-conjugated polymers (FπCPs) are a promising functional material for flexible optoelectronics, attributed to their potential interchain interpenetration and entanglement. However, the challenge remains in obtaining elastic-plastic FπCPs with intrinsic robust optoelectronic property and excellent long-term and cycling deformation stability simultaneously for applications in deep-blue flexible polymer light-emitting diodes (PLEDs). This study, demonstrates a series of elastic-plastic FπCPs (P1-P4) with an excellent energy dissipation capacity via side-chain internal plasticization for the ultra-deep-blue flexible PLEDs. First, the freestanding P1 film exhibited a maximum fracture strain of 34.6%. More interestingly, the elastic behavior is observed with a low strain (≤10%), and the stretched film with a high deformation (>10%) attributed to plastic processing revealed the robust capacity to realize energy absorption and release. The elastic-plastic P1 film exhibits outstanding ultra-deep-blue emission, with an efficiency of 56.38%. Subsequently, efficient PLEDs are fabricated with an ultra-deep-blue emission of CIE (0.16, 0.04) and a maximum external quantum efficiency of 1.73%. Finally, stable and efficient ultra-deep-blue electroluminescence are obtained from PLEDs based on stretchable films with different strains and cycling deformations, suggesting excellent elastic-plastic behavior and deformation stability for flexible electronics.

3.
ACS Omega ; 9(18): 20185-20195, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38737014

RESUMEN

The absolute structures of a pair of infinite Na(H2O)4+-connected ε-Keggin-Al13 species (Na-ε-K-Al13) that were inversion structures and mirror images of each other were determined. Single crystals obtained by adding A2SO4 (A = Li, Na, K, Rb, or Cs) solution to NaOH-hydrolyzed AlCl3 solution were subjected to X-ray structure analyses. The statistical results for 36 single crystals showed that all the crystals had almost the same unit cell parameter, belonged to the same F4̅3m space group, and possessed the same structural formula [Na(H2O)4AlO4Al12(OH)24(H2O)12](SO4)4·10H2O. However, the crystals had two inverse absolute structures (denoted A and B), which had a crystallization ratio of 1:1. From Li+ to Cs+, with increasing volume of the cation coexisting in the mother solution, the degree of disorder of the four H2O molecules in the Na(H2O)4+ hydrated ion continuously decreased; they became ordered when the cation was Cs+. Absolute structures A and B are the first two infinite aluminum polycations connected by statistically occupied [(Na1/4)4(H2O)4]+ hydrated ions. The three-dimensional structure of the infinite Na-ε-K-Al13 species can be regarded as the assembly of finite ε-K-Al13 species linked by [(Na1/4)4(H2O)4]+ in a 1:1 ratio. In this assembly, each [(Na1/4)4(H2O)4]+ is connected to four ε-K-Al13 and each ε-K-Al13 is also connected to four [(Na1/4)4(H2O)4]+ in tetrahedral orientations to form a continuous rigid framework structure, which has an inverse spatial orientation between absolute structure A and B. This discovery clarifies that the ε-K-Al13 (or ε-K-GaAl12) species in Na[MO4Al12(OH)24(H2O)12](XO4)4·nH2O (M = Al, Ga; X = S, Se; n = 10-20) exists as discrete groups and deepens understanding of the formation and evolution process of polyaluminum species in forcibly hydrolyzed aluminum salt solution. The reason why Na+ statistically occupies the four sites was examined, and a formation and evolution mechanism of the infinite Na-ε-K-Al13 species was proposed.

4.
Front Plant Sci ; 15: 1387427, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817928

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive fungal diseases threatening global wheat production. Exploring powdery mildew resistance (Pm) gene(s) and dissecting the molecular mechanism of the host resistance are critical to effectively and reasonably control this disease. Durum wheat (Triticum turgidum L. var. durumDesf.) is an important gene donor for wheat improvement against powdery mildew. In this study, a resistant durum wheat accession W762 was used to investigate its potential resistance component(s) and profile its expression pattern in responding to Bgt invasion using bulked segregant RNA-Seq (BSR-Seq) and further qRT-PCR verification. Genetic analysis showed that the powdery mildew resistance in W762 did not meet monogenic inheritance and complex genetic model might exist within the population of W762 × Langdon (susceptible durum wheat). After BSR-Seq, 6,196 consistently different single nucleotide polymorphisms (SNPs) were called between resistant and susceptible parents and bulks, and among them, 763 SNPs were assigned to the chromosome arm 7B. Subsequently, 3,653 differentially expressed genes (DEGs) between resistant and susceptible parents and bulks were annotated and analyzed by Gene Ontology (GO), Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The potential regulated genes were selected and analyzed their temporal expression patterns following Bgt inoculation. As a result, nine disease-related genes showed distinctive expression profile after Bgt invasion and might serve as potential targets to regulate the resistance against powdery mildew in W762. Our study could lay a foundation for analysis of the molecular mechanism and also provide potential targets for the improvement of durable resistance against powdery mildew.

5.
Tissue Cell ; 88: 102400, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759522

RESUMEN

Sepsis-induced acute lung injury is a common and severe complication of sepsis, for which effective treatments are currently lacking. Previous studies have demonstrated the influence of wogonin in treating acute lung injury (ALI). However, its precise mechanism of action remains unclear. To delve deeper into the mechanisms underlying wogonin's impacts in sepsis-induced acute lung injury, we established a mouse sepsis model through cecal ligation and puncture and conducted further cell experiments using lipopolysaccharide-treated MH-S and MLE-12 cells to explore wogonin's potential mechanisms of action in treating ALI. Our results revealed that wogonin significantly increased the survival rate of mice, alleviated pulmonary pathological damage and inflammatory cell infiltration, and activated the SIRT1-FOXO1 pathway. Additionally, wogonin suppressed the release of pro-inflammatory factors by M1 macrophages and induced the activation of M2 anti-inflammatory factors. Further in vitro studies confirmed that wogonin effectively inhibited M1 macrophage polarization through the activation of the SIRT1-FOXO1 pathway, thereby mitigating lung pathological changes caused by ALI. In summary, our study demonstrated that wogonin regulated macrophage M1/M2 polarization through the activation of the SIRT1-FOXO1 pathway, thereby attenuating the inflammatory response and improving pulmonary pathological changes induced by sepsis-induced ALI. This discovery provided a solid mechanistic foundation for the therapeutic use of wogonin in sepsis-induced ALI, shedding new light on potential strategies for the treatment of sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Flavanonas , Proteína Forkhead Box O1 , Macrófagos , Sepsis , Transducción de Señal , Sirtuina 1 , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Sirtuina 1/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Flavanonas/farmacología , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/patología , Proteína Forkhead Box O1/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Polaridad Celular/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos
6.
Heliyon ; 10(5): e27276, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463857

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is caused by persistent micro-injuries and aberrant repair processes. Myofibroblast differentiation in lung is a key event for abnormal repair. Dihydroartemisinin(DHA), a well-known anti-malarial drug, have been shown to alleviate pulmonary fibrosis, but its mechanism is not clear. Ferroptosis is involved in the pathgenesis of many diseases, including IPF. Ferritinophagy is a form of cellular autophagy which regulates intracellular iron homeostasis. The function of DHA on myofibroblasts differentiation of pulmonary and whether related with ferroptosis and ferritinophagy are unknown now. Using human fetal lung fibroblast 1(HFL1) cell line and the qRT-PCR, immunofluorescent and Western blotting techniques, we found that after TGF-ß1 treatment, the levels of ɑ-SMA expression and ROS increased; the mRNA and protein levels of FTH1 and NCOA4, the content of Fe2+ and 4-HNE increased significantly at 6h, then gradually reduced with time. After DHA treatment, FHL1 cells appeared ferroptosis; the levels of α-SMA mRNA and protein reduced and the levels of ROS and 4-HNE increased; the Fe2+ levels decreased sharply at 6h, then increased with time, and were higher than normal since 24h; the mRNA and protein levels of FTH1 and NCOA4 decreased, exhibited a downward trend. These results show that Fe2+, ROS and lipid peroxidation are involved in and ferritinophagy is inhibited during fibroblast-to-myofibroblast differentiation; The depletion of Fe2+ at early stage induced by DHA treatment triggers the ferritinophagy in HFL1 cells, leading to degradation of FTH1 and NCOA4 and following increase of Fe2+ levels. DHA may inhibit the fibroblast-to-myofibroblast differentiation through inducing ferroptosis mediated by ferritinophagy.

7.
Adv Mater ; 36(19): e2307605, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38349697

RESUMEN

Emerging printed large-area polymer light-emitting diodes (PLEDs) are essential for manufacturing flat-panel displays and solid lighting devices. However, it is challenging to obtain large-area and stable ultradeep-blue PLEDs because of the lack of light-emitting conjugated polymers (LCPs) with robust deep-blue emissions, excellent morphological stabilities, and high charging abilities. Here, a novel unsymmetrically substituted polydiarylfluorene (POPSAF) is obtained with stable narrowband emission for large-area printed displays via triphenylamine (TPA) spirofunctionalization of LCPs. POPSAF films show narrowband and stable ultradeep-blue emission with a full width at half maximum (FWHM) of 36 nm, associated with their intrachain excitonic behavior without obvious polaron formation. Compared to controlled poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF), excellent charge transport is observed in the POPSAF films because of the intrinsic hole transport ability of the TPA units. Large-area PLEDs are fabricated via blade-coating with an emission area of 9 cm2, which exhibit uniform ultradeep-blue emission with an FWHM of 36 nm and corresponding Commission internationale de l'éclairage (CIE) coordinates of (0.155, 0.072). These findings are attributed to the synergistic effects of robust emission, stable morphology, and printing capacity. Finally, preliminary printed passive matrix (PM) PLED displays with 20 × 20 pixels monochromes are fabricated, confirmed the effectiveness of spirofunctionalization in optoelectronics.

8.
J Colloid Interface Sci ; 658: 238-246, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104406

RESUMEN

Solar-driven desalination is an environmentally sustainable method to alleviate the problems of freshwater scarcity and the energy crisis. However, how to improve the synergy between the photothermal material and the evaporator to achieve high photothermal conversion efficiency simultaneously, excellent thermal management system and good salt resistance remains a challenge. Here, a mushroom-shaped solar evaporation device is designed and fabricated with iron diselenide/carbon black (FeSe2/CB) coated cellulose acetate (CA) film as mushroom surface and cotton swab as mushroom handle, which presented high solar-driven evaporation and excellent salt resistance. Thanks to the unique photothermal effect and the synergistic effect, the FeSe2/CB composites enabled a promising photothermal conversion efficiency of up to 65.8 °C after 180 s. The mushroom-shaped evaporation device effectively overcomes water transport and steam spillage channel blockage caused by salt crystallization through its unique vertical transport water channels and conical air-water interface. When exposed to real sunlight, the solar evaporation rate of the steam generation structure reached as high as 2.03 kg m-2 h-1, which is more than 13 times higher than natural evaporation. This study offered new insights into the higher solar-driven evaporation rate and salt-blocking resistance of the FeSe2/CB mushroom-shaped solar evaporation device for solar-powered water production.

9.
Adv Mater ; 35(40): e2303923, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37435996

RESUMEN

Intrinsically stretchable polymeric semiconductors are essential to flexible polymer light-emitting diodes (PLEDs) owing to their excellent strain tolerance capacity under long-time deformation operation. Obtaining intrinsic stretchability, robust emission properties, and excellent charge-transport behavior simultaneously from fully π-conjugated polymers (FCPs) is difficult, particularly for applications in deep-blue PLEDs. Herein, an internal plasticization strategy is proposed to introduce a phenyl-ester plasticizer into polyfluorenes (PF-MC4, PF-MC6, and PF-MC8) for narrowband deep-blue flexible PLEDs. Compared with controlled poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPFs) (2.5%), the freestanding PF-MC8 thin film shows a fracture strain of >25%. The three stretchable films exhibit stable and efficient deep-blue emission (PLQY > 50%) because of the encapsulation of π-conjugated backbone via pendant phenyl-ester plasticizers. The PF-MC8-based PLEDs show deep-blue emission, which corresponds to CIE and EQE values of (0.16, 0.10) and 1.06%, respectively. Finally, the narrowband deep-blue electroluminescence (FWHM of ≈25 nm; CIE coordinates: (0.15, 0.08)) and performance of the transferred PLEDs based on the PF-MC8 stretchable film are independent of the tensile ratio (up to 45%); however, they show a maximum brightness of 1976 cd m-2 at a ratio of 35%. Therefore, internal plasticization is a promising approach for designing intrinsically stretchable FCPs for flexible electronics.

10.
Sci Rep ; 13(1): 7984, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198280

RESUMEN

The DOHaD theory suggests that adverse environmental factors in early life may lead to the development of metabolic diseases including diabetes and hypertension in adult offspring through epigenetic mechanisms such as DNA methylation. Folic acid (FA) is an important methyl donor in vivo and participates in DNA replication and methylation. The preliminary experimental results of our group demonstrated that lipopolysaccharide (LPS, 50 µg/kg/d) exposure during pregnancy could lead to glucose metabolism disorders in male offspring, but not female offspring; however, the effect of folic acid supplementation on glucose metabolism disorders in male offspring induced by LPS exposure remains unclear. Therefore, in this study, pregnant mice were exposed to LPS on gestational day (GD) 15-17 and were given three doses of FA supplementation (2 mg/kg, 5 mg/kg, or 40 mg/kg) from mating to lactation to explore its effect on glucose metabolism in male offspring and the potential mechanism. This study confirmed that FA supplementation of 5 mg/kg in pregnant mice improved glucose metabolism in LPS-exposed offspring during pregnancy by regulating gene expression.


Asunto(s)
Trastornos del Metabolismo de la Glucosa , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Humanos , Animales , Ratones , Masculino , Lipopolisacáridos/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ácido Fólico/efectos adversos , Suplementos Dietéticos , Glucosa/metabolismo
11.
J Nutr Sci Vitaminol (Tokyo) ; 69(1): 28-37, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36858538

RESUMEN

Periconceptional folate supplementation is prevalent, raising concerns about possible side effects. The aim of this study was to investigate the associations of folic acid supplementation, dietary folate, serum folate with gestational diabetes mellitus (GDM) risk. In this matched case-control study, 81 pregnant women with GDM (cases) and 81 pregnant women with non-GDM (controls) were identified through age difference (≤3 y) and parity (Both primipara or multipara women) matching, and serum folate levels were measured during the GDM screening (24-28 gestational wk). Folic acid supplementation and dietary folate intake from three months prepregnancy through midpregnancy were assessed using a self-reported questionnaire and food frequency questionnaire. Multivariate binary logistic regression models were used to evaluate the association between folate and GDM. After adjusting for confounding factors, we observed that compared with folic acid supplementation dose ≤400 µg/d, pregnancies without folic acid supplementation and supplemental dose >800 µg/d were associated with GDM risk (adjusted odds ratio=7.25, 95% confidence interval: 1.34-39.36; adjusted odds ratio=4.20, 95% confidence interval: 1.03-17.22), while no significant association with a 400-800 µg/d dose of folic acid supplementation and GDM. Compared with folic acid supplementation dose ≤24 wk, pregnancies without folic acid supplementation were associated with GDM risk (adjusted odds ratio=6.70, 95% confidence interval: 1.22-36.77), while no significant association with folic acid supplementation dose >24 wk and GDM. No significant association of dietary folate and serum folate with GDM was found. No or a higher dose of folic acid supplementation would increase GDM risk and a dose of <800 µg/d is the safe dose.


Asunto(s)
Diabetes Gestacional , Embarazo , Femenino , Humanos , Estudios de Casos y Controles , Ácido Fólico , Modelos Logísticos , Suplementos Dietéticos
12.
Adv Sci (Weinh) ; 10(6): e2205411, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36574468

RESUMEN

Large-area polymer light-emitting diodes (PLEDs) manufactured by printing are required for flat-panel lighting and displays. Nevertheless, it remains challenging to fabricate large-area and stable deep-blue PLEDs with narrowband emission due to the difficulties in precisely tuning film uniformity and obtaining single-exciton emission. Herein, efficient and stable large-area deep-blue PLEDs with narrowband emission are prepared from encapsulated polydiarylfluorene. Encapsulated polydiarylfluorenes presented an efficient and stable deep-blue emission (peak: 439 nm; full width at half maximum (FWHM): 39 nm) in the solid state due to their single-chain emission behavior without inter-backbone chain aggregation. Large-area uniform blade-coated films (16 cm2 ) are also fabricated with excellent smoothness and morphology. Benefitting from efficient emission and excellent printed capacity, the blade-coated PLEDs with a device area of 9 mm2 realized uniform deep-blue emission (FWHM: 38 nm; CIE: 0.153, 0.067), with a corresponding maximum external quantum efficiency and the brightness comparable to those of devices based on spin-coated films. Finally, considering the essential role of deep-blue LEDs, a preliminary patterned PLED array with a pixel size of 800 × 1000 µm2 and a monochrome display is fabricated, highlighting potential full-color display applications.

13.
Front Microbiol ; 13: 1024686, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386656

RESUMEN

Integrated soil-crop management (ISCM) has been shown as an effective strategy to increase efficiency and yield while its soil microbial community structure and function remain unclear. We evaluated changes in soil physicochemical factors, bacterial community structure responses, and the contributions of soil properties and bacterial communities to summer maize-winter wheat yield and GHG emissions through an ISCM experiment [T1 (local smallholder farmers practice system), T2 (improved management system), T3 (high-yield production system), and T4 (optimized management system)], which could provide scientific guidance for sustainable development of soil in summer maize-winter wheat rotation system. The results showed that the optimized ISCM could improve the soil quality, which significantly changed the soil bacterial community structure to reduce GHG emissions and increase yield. The co-occurrence network density of T3 was increased significantly. The Acidobacteria (class) and OM190 (class) were enriched in T2 and T4. The Frankiales (order) and Gaiellales (order) were enriched in T3. However, the changes in different crop growth stages were different. At the wheat jointing stage and maize mature stage, T4 could enhance carbon-related functional groups, such as aromatic hydrocarbon degradation and hydrocarbon degradation, to increase the soil organic carbon content. And at the maize tasseling stage, T4 could enhance nitrogen-related functional groups. And soil bacteria structure and function indirectly affected annual yield and GHG emission. T2 and T4 exhibited a similar soil microbial community. However, the yield and nitrogen use efficiency of T2 were reduced compared to those of T4. The yield of T3 was the highest, but the GHG emission increased and soil pH and nitrogen use efficiency decreased significantly. Therefore, T4 was a suitable management system to improve soil quality and soil bacterial community structure and function to decrease GHG emissions and increase the yield of the summer maize-winter wheat rotation system.

14.
Chemosphere ; 308(Pt 2): 136273, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36064020

RESUMEN

This study investigated the performance of constructed wetlands coupled with microbial fuel cells (CW-MFCs) treating agricultural wastewater containing glyphosate (N-phosphonomethyl glycine, PMG), and the use of Cladophora as a cathode plant in this system. Ten devices were divided into Cladophora groups (CGs) and no Cladophora groups (NGs), with five PMG concentrations (0, 10, 25, 50, and 100 mg/L). PMG removal efficiency significantly decreased with increasing PMG (P < 0.01) and was higher in CG devices than in NG devices at low PMG concentrations (<50 mg/L). The removal efficiency of chemical oxygen demand (COD) and NH4+ in CGs was significantly higher than in NGs (P < 0.01). The highest power densities of 6.37 (CGs) and 6.26 mW/m2 (NGs) were obtained at 50 mg/L PMG, and the average voltage was significantly higher in CGs than in NGs (p < 0.01). Moreover, PMG had a negative effect on the enrichment of electrochemically active bacteria, but Cladophora could mitigate this effect. The abundance of the resistance gene epsps was stabilized; The phnJ gene increased with increasing PMG in NGs and was downregulated at high PMG concentration in CGs, indicating better microbial adaptation to PMG in CGs throughout the experiment.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electricidad , Glicina/análogos & derivados , Aguas Residuales/microbiología , Humedales , Glifosato
15.
Mitochondrial DNA B Resour ; 7(8): 1484-1485, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35989877

RESUMEN

Pterobryopsis orientalis (Müll. Hal.) M. Fleisch. 1917, a subtropical moss from the family Pterobryaceae, is native to the western Himalaya. In this study, the complete chloroplast genome of P. orientalis was sequenced using the Illumina NovaSeq 6000 platform, as a resource for future research on the classification and evolution of the Pterobryaceae. The genome was 124,719 bp in length, consisting of a large single-copy (LSC: 87,401 bp), a small single-copy (SSC: 18,530 bp), and two inverted repeat regions (IRs: 18,788 bp). The genome consisted of 126 unique genes, including 82 protein-coding genes, 36 tRNA genes, and eight rRNA genes. The overall GC content of the whole chloroplast genome was 52.09%. Phylogenetic analysis showed that P. orientalis is closely related to the genus Calyptothecium.

16.
J Phys Chem Lett ; 13(31): 7286-7295, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35916779

RESUMEN

It is challenging to construct the intrinsically stretchable active layer of rigid conjugated polymers (CPs) toward flexible deep-blue light-emitting diodes (FLEDs). Inspired by the self-toughness effect, sacrificial hydrogen bonding (H-bonding) and a cross-linked network synergistically enabled polydiarylfluorene (PFs-NH) films to present efficient deep-blue emission and excellent intrinsic stretchability. In particular, a cross-linked network structure presenting viscoelasticity behaviors, which was successfully inherited into postprocessed films with interchain interpenetration and a crystallinity domain and behaved as energy absorption and dissipation centers, was induced by the interchain H-bonding interaction in toluene (Tol) precursor solutions where the storage moduli (G') gradually exceeded the loss moduli (G″). Subsequently, intrinsic stretchable films with a tensile rate of 30% were prepared from Tol solutions, different from the brittle films from polar solvents. Eventually, narrow band, deep-blue PLEDs showed a maximum EQE of 1.28% and a full width half-maximum (fwhm) of 28 nm. Therefore, the self-toughness effect induced by hierarchical structures will be feasible to obtain high-performance FLEDs.

17.
J Environ Manage ; 319: 115610, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35797907

RESUMEN

Solid non-aqueous phases (NAPs), such as silicone rubber, have been used extensively to improve the removal of volatile organic compounds (VOCs). However, the removal of VOCs is difficult to be further improved because the poor understanding of the mass transfer and reaction processes. Further, the conventional reactors were either complicated or uneconomical. In view of this, herein, an airlift bioreactor with silicone rubber was designed and investigated for dichloromethane (DCM) treatment. The removal efficiency of Reactor 1 (with silicone rubber) was significantly higher than that of Reactor 2 (without silicone rubber), with corresponding higher chloride ion and CO2 production. It was found that Reactor 1 achieved a much better DCM shock tolerance capability and biomass stability than Reactor 2. Silicone rubber not only enhanced the mass transfer in terms of both gas/liquid and gas/microbial phases, but also decreased the toxicity of DCM to microorganisms. Noteworthily, despite the identical inoculum used, the relative abundance of potential DCM-degrading bacteria in Reactor 1 (91.2%) was much higher than that in Reactor 2 (24.3%) at 216 h. Additionally, the silicone rubber could be automatically circulated in the airlift bioreactor due to the driven effect of the airflow, resulting in a significant reduction of energy consumption.


Asunto(s)
Cloruro de Metileno , Elastómeros de Silicona , Biodegradación Ambiental , Biomasa , Reactores Biológicos
18.
J Colloid Interface Sci ; 625: 289-296, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35717844

RESUMEN

Despite significant of solar energy to power water evaporation in seawater desalination, the commercial application of this technology is limited by the poor light absorption and low photothermal conversion of existing photothermal materials. Herein, we report a simple method for solar-driven water evaporation using a device comprising Cu2-xSe/Nb2CTx nanocomposites supported by a glass microfiber membrane, which utilizes cotton thread as water transport pathway. The proposed device demonstrates excellent light absorption, water transportation, and thermal management. Benefiting from the strong synergetic photothermal effect of Cu2-xSe and Nb2CTx, the Cu2-xSe/Nb2CTx nanocomposites function as an efficient solar absorber with excellent photothermal conversion efficiency. The rough surface, low thermal conductivity and good hydrophilicity of glass microfiber membrane could maximize light capture, limit heat loss, and timely replenish water during the water evaporation process. When evaluated as a water evaporation system for outdoor seawater desalination, the system achieved a water evaporation of 12.60 kg·m-2 within 6 h. High fresh water generation rate is an important embodiment of high photothermal conversion efficiency. This study demonstrates a new route for designing solar desalination devices with high photothermal conversion properties.

19.
Mitochondrial DNA B Resour ; 7(6): 1046-1047, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756433

RESUMEN

In this study, the complete chloroplast chloroplast genome of Calyptothecium hookeri was studied and reported. The size of the entire chloroplast genome was 124,401bp in length, comprising of two inverted repeats (IRa and IRb, 9371 bp respectively) separated by one large single copy (LSC: 87,126 bp) and one small single copy (SSC: 18,533 bp). The GC content of the genome sequence was 41.28%. A total of 126 functional genes were predicted, consisting of 82 protein-coding genes, 36 tRNA genes, and eight rRNA genes. Phylogenetic analysis showed that the two Pterobryaceae species C. hookeri and C. recurvulum clustered in one clade, which is sister to the Theliaceae species Myurella julacea.

20.
Gynecol Endocrinol ; 38(7): 583-587, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35549805

RESUMEN

OBJECTIVE: The aim of this study was to investigate the relationship between dietary n-6: n-3 poly-unsaturated fatty acids (PUFA) ratio and the risk of developing gestational diabetes mellitus (GDM). MATERIALS AND METHODS: A total of 100 pregnant women were prospectively included for detailed information on dietary intake at 16-18 weeks evaluated using a three-day food record, and subsequent GDM diagnosis at 24-28 weeks. Participants were divided into two groups for analysis: GDM group (n = 22) and control group (n = 78) based on oral glucose tolerance test results performed between 24 and 28 weeks. RESULTS: The average dietary n-6: n-3 PUFA ratio in the control group was 5.63 ± 2.12 and that in the GDM group was 8.35 ± 3.45, within a significant difference (p < .05). A significant difference was associated with a higher dietary n-6: n-3 PUFA ratio and GDM (adjusted odds ratio = 4.29, 95%confidence interval:1.303, 14.124). CONCLUSIONS: Higher dietary n-6: n-3 PUFA ratio was associated with higher odds of GDM. Given the small sample, further studies are required to confirm this hypothesis.


Asunto(s)
Diabetes Gestacional , Ácidos Grasos Omega-3 , Dieta , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Embarazo , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA