Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Talanta ; 273: 125933, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38503127

Continuous glucose monitoring is very important to daily blood glucose control in diabetic patients, but its accuracy is limited by the narrow linear range of the response of biosensor to the glucose concentration because of the oxygen starvation in tissue and the limited maximum conversion rate of glucose oxidase. In this work, a biocompatible diffusion limiting membrane based on two medical-grade polyurethanes is developed via blending modification to restrict the diffusion flux of glucose to match the oxygen concentration and the maximum conversion rate. The expansiveness of the linear range for the nanomaterials-modified electrode in the glucose biosensor can be achieved through the regulation of two polyurethanes, the solvent, and the thickness of the membrane. In addition, the mass transport of hydrogen peroxide and interfering substances is also limited of the membrane. The in vitro experiments demonstrated that the membrane-modified microneedle biosensor exhibited a rapid response to the concentration variation of glucose, a wide linear range that is sufficient to cover the blood concentration of healthy and diabetic people, the ability to resist the oxygen concentration fluctuation and interfering substances, good reproducibility and long-term stability. The custom wearable electrochemical system, possessing these characteristics, has been proven to accurately monitor the blood concentration in a living rat in real time. This demonstrates a significant potential for application in both daily and clinical blood glucose monitoring.


Biosensing Techniques , Diabetes Mellitus , Humans , Rats , Animals , Blood Glucose , Blood Glucose Self-Monitoring , Polyurethanes , Reproducibility of Results , Glucose , Electrodes , Oxygen , Glucose Oxidase/chemistry
2.
Electrophoresis ; 45(5-6): 433-441, 2024 Mar.
Article En | MEDLINE | ID: mdl-38161243

Herein, we report an electroosmotic pump (EOP) based on a multilayer track-etched polycarbonate (PC) membrane. A remarkable increase of maximum backpressure (198.2-2400 mmH2 O) of a fundamental pump unit was obtained at 0.8 mA, when the number of PC membranes was increased from 1 to 10. Meanwhile, the corresponding flow rate was increased from 80.3 to 111.7 µL/min. Furthermore, multiple pump units were assembled in series to obtain a multistage EOP. For a three-stage EOP (EOP-3), the operating voltage and power can be decreased significantly by 52%-72% under different driving currents, with a minimum power of 26.7 µW. Thus, EOP-3 can run stably over 35 h at a pulse current of 0.1 mA without the generation of gas bubbles. The pump was further integrated into a miniature device, which was successfully used to decrease the blood glucose level of diabetic rats by subcutaneous delivery of fast-acting insulin. This work brings a facile and efficient strategy to enhance the backpressure and lower the operating voltage and power of EOPs, which may find promising applications in drug delivery.


Diabetes Mellitus, Experimental , Animals , Rats , Electroosmosis
...