Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 11: 1365524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784235

RESUMEN

Precision medicine, characterized by the personalized integration of a patient's genetic blueprint and clinical history, represents a dynamic paradigm in healthcare evolution. The emerging field of personalized anesthesia is at the intersection of genetics and anesthesiology, where anesthetic care will be tailored to an individual's genetic make-up, comorbidities and patient-specific factors. Genomics and biomarkers can provide more accurate anesthetic protocols, while artificial intelligence can simplify anesthetic procedures and reduce anesthetic risks, and real-time monitoring tools can improve perioperative safety and efficacy. The aim of this paper is to present and summarize the applications of these related fields in anesthesiology by reviewing them, exploring the potential of advanced technologies in the implementation and development of personalized anesthesia, realizing the future integration of new technologies into clinical practice, and promoting multidisciplinary collaboration between anesthesiology and disciplines such as genomics and artificial intelligence.

2.
Adv Sci (Weinh) ; 10(18): e2300148, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37013465

RESUMEN

Meat is among the most consumed foods worldwide and has a unique flavor and high nutrient density in the human diet. However, the genetic and biochemical bases of meat nutrition and flavor are poorly understood. Here, 3431 metabolites and 702 volatiles in 423 skeletal muscle samples are profiled from a gradient consanguinity segregating population generated by Pekin duck × Liancheng duck crosses using metabolomic approaches. The authors identified 2862 metabolome-based genome-wide association studies (mGWAS) signals and 48 candidate genes potentially modulating metabolite and volatile levels, 79.2% of which are regulated by cis-regulatory elements. The level of plasmalogen is significantly associated with TMEM189 encoding plasmanylethanolamine desaturase 1. The levels of 2-pyrrolidone and glycerophospholipids are regulated by the gene expression of AOX1 and ACBD5, which further affects the levels of volatiles, 2-pyrrolidone and decanal, respectively. Genetic variations in GADL1 and CARNMT2 determine the levels of 49 metabolites including L-carnosine and anserine. This study provides novel insights into the genetic and biochemical basis of skeletal muscle metabolism and constitutes a valuable resource for the precise improvement of meat nutrition and flavor.


Asunto(s)
Carboxiliasas , Estudio de Asociación del Genoma Completo , Animales , Humanos , Patos/genética , Patos/metabolismo , Carne/análisis , Metaboloma/genética , Músculo Esquelético , Carboxiliasas/metabolismo
3.
Gigascience ; 122023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36971291

RESUMEN

BACKGROUND: Short-term, intense artificial selection drives fast phenotypic changes in domestic animals and leaves imprints on their genomes. However, the genetic basis of this selection response is poorly understood. To better address this, we employed the Pekin duck Z2 pure line, in which the breast muscle weight was increased nearly 3-fold after 10 generations of breeding. We denovo assembled a high-quality reference genome of a female Pekin duck of this line (GCA_003850225.1) and identified 8.60 million genetic variants in 119 individuals among 10 generations of the breeding population. RESULTS: We identified 53 selected regions between the first and tenth generations, and 93.8% of the identified variations were enriched in regulatory and noncoding regions. Integrating the selection signatures and genome-wide association approach, we found that 2 regions covering 0.36 Mb containing UTP25 and FBRSL1 were most likely to contribute to breast muscle weight improvement. The major allele frequencies of these 2 loci increased gradually with each generation following the same trend. Additionally, we found that a copy number variation region containing the entire EXOC4 gene could explain 1.9% of the variance in breast muscle weight, indicating that the nervous system may play a role in economic trait improvement. CONCLUSIONS: Our study not only provides insights into genomic dynamics under intense artificial selection but also provides resources for genomics-enabled improvements in duck breeding.


Asunto(s)
Variaciones en el Número de Copia de ADN , Patos , Femenino , Animales , Patos/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genómica , Selección Genética , Polimorfismo de Nucleótido Simple
4.
Heredity (Edinb) ; 126(6): 991-999, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33767369

RESUMEN

Muscle fiber diameter is an economically important trait because it affects meat yield and quality. However, the genetic basis underlying muscle fiber diameter has not been determined. In this study, we collected THREE muscular histological phenotypes in 479 ducks from an F2 segregating population generated by mallard × Pekin duck crosses. We performed genome-wide association studies (GWAS) and identified a quantitative trait locus (QTL) significantly associated with muscle fiber diameter on chromosome 3. Then, we discovered the selection signatures using the fixation index among 40 mallards and 30 Pekin ducks in this QTL region. Furthermore, we characterized the recombination event in this QTL region and identified a 6-kb block located on TASP1 that was significantly associated with muscle fiber diameter. Finally, five SNPs were screened as potential causative mutations within the 6-kb block. In conclusion, we demonstrated that TASP1 contributes to an increase in muscle fiber diameter, which helps to characterize muscle development and contributes to the genetic improvement of meat yield and quality in livestock.


Asunto(s)
Patos/genética , Endopeptidasas/genética , Fibras Musculares Esqueléticas , Sitios de Carácter Cuantitativo , Animales , Estudios de Asociación Genética/veterinaria , Carne/análisis , Fenotipo
5.
Artículo en Inglés | MEDLINE | ID: mdl-30265919

RESUMEN

HSP70/110s are a subgroup of heat shock proteins and play crucial roles in protein homeostasis. HSP70/110s can enhance cell survival in response to a multitude of stressful stimuli, of which the most studied one is heat stress. To perform a systematic study of HSP70/110s in sea cucumber Apostichopus japonicus, 15 HSP70/110 genes, including 13 HSP70s and two HSP110s, were identified and characterized from the transcriptome and genome of sea cucumber. Moderate expansion and conserved structure were found by the phylogenetic and syntenic analysis. Differential expression patterns of HSP70/110s were observed in adult individuals during aestivation, with the comparison of juvenile individuals without aestivation in chronic heat stress. Tissue-specific expression profiles were found both in adult and juvenile individuals, which might indicate that the functional tissues (intestine and respiratory tree) could be restored to normal physiological activity prior to protecting and sporting tissues (body wall and muscle). Differential expression profiles were also observed between the adult and juvenile individuals, which was mainly due to the hypometabolism in aestivation. Taken together, tissue-specific pattern and individual-specific pattern were observed in the HSP70/110 expression profiles in sea cucumber during aestivation. These findings could provide early insight into the involvement of HSP70/110s in the aestivation of marine invertebrate.


Asunto(s)
Estivación , Proteínas del Choque Térmico HSP110/genética , Proteínas HSP70 de Choque Térmico/genética , Stichopus/genética , Stichopus/fisiología , Transcriptoma , Animales , Perfilación de la Expresión Génica , Filogenia
6.
Front Physiol ; 9: 211, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29628893

RESUMEN

Ammonia stress can inhibit the survival and growth, and even cause mortality of shrimp. In this study, ammonia-metabolizing enzyme activities and gene expression were compared between two strains of L. vannamei under different ammonia-N ([Formula: see text]) concentrations (3.4, 13.8, and 24.6 mg/L). The results showed that elevated ammonia concentrations mainly increased glutamine synthetase (GSase) activities while inhibiting transglutaminase (TGase) activities in the muscle of both strains. Thus, we concluded that L. vannamei could accelerate the synthesis of glutamine from glutamate and [Formula: see text] to alleviate ammonia stress. Compared with the muscle, the hepatopancreas plays a major role in ammonia stress and might be a target tissue to respond to the ammonia stress. Compared to the control group, the treatment of high ammonia concentrations reduced the hepatopancreas TGase (TG) gene expression and increased the gene expression rates of glutamate dehydrogenase-ß (GDH-ß) and GSase (GS) in both the muscle and the hepatopancreas of the two strains (p < 0.05). These genes (GDH-ß and GS) in strain B were not only expressed earlier but also at levels higher than the expression range of strain A. At the gene level, strain B showed a more rapid and positive response than strain A. These data might help reveal the physiological responses mechanisms of shrimp adapt to ammonia stress and speed up the selective breeding process in L. vannamei.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...