Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
ACS Nano ; 16(4): 6394-6403, 2022 Apr 26.
Article En | MEDLINE | ID: mdl-35404055

Micro-/nanosized organic-inorganic hybrid perovskite single crystals (SCs) with appropriate thickness and high crystallinity are promising candidates for high-performance electroluminescent (EL) devices. However, their small lateral size poses a great challenge for efficient device construction and performance optimization, causing perovskite SC-based light-emitting diodes (PSC-LEDs) to demonstrate poor EL performance. Here, we develop a facile liquid-insulator bridging (LIB) strategy to fabricate high-luminance PSC-LEDs based on single-crystalline CH3NH3PbBr3 microflakes. By introducing a blade-coated poly(methyl methacrylate) (PMMA) insulating layer to effectively overcome the problems of leakage current and possible short circuits between electrodes, we achieve the reliable fabrication of PSC-LEDs. The LIB method also allows us to systematically boost the device performance through crystal growth regulation and device architecture optimization. Consequently, we realize the best CH3NH3PbBr3 microflake-based PSC-LED with an ultrahigh luminance of 136100 cd m-2 and a half-lifetime of 88.2 min at an initial luminance of ∼1100 cd m-2, which is among the highest for organic-inorganic hybrid perovskite LEDs reported to date. Moreover, we observe the strong polarized edge emission of the microflake-based PSC-LEDs with a high degree of polarization up to 0.69. Our work offers a viable approach for the development of high-performance perovskite SC-based EL devices.

...