Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Chem Sci ; 14(42): 11718-11726, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37920356

Living organisms carry out a wide range of remarkable functions, including the synthesis of thousands of simple and complex chemical structures for cellular growth and maintenance. The manipulation of this reaction network has allowed for the genetic engineering of cells for targeted chemical synthesis, but it remains challenging to alter the program underlying their fundamental chemical behavior. By taking advantage of the unique ability of living systems to use evolution to find solutions to complex problems, we have achieved yields of up to ∼95% for three C4 commodity chemicals, n-butanol, 1,3-butanediol, and 4-hydroxy-2-butanone. Genomic sequencing of the evolved strains identified pcnB and rpoBC as two gene loci that are able to alter carbon flow by remodeling the transcriptional landscape of the cell, highlighting the potential of synthetic pathways as a tool to identify metabolic control points.

2.
PLoS One ; 12(9): e0184730, 2017.
Article En | MEDLINE | ID: mdl-28886200

The economic production of cellulosic biofuel requires efficient and full utilization of all abundant carbohydrates naturally released from plant biomass by enzyme cocktails. Recently, we reconstituted the Neurospora crassa xylodextrin transport and consumption system in Saccharomyces cerevisiae, enabling growth of yeast on xylodextrins aerobically. However, the consumption rate of xylodextrin requires improvement for industrial applications, including consumption in anaerobic conditions. As a first step in this improvement, we report analysis of orthologues of the N. crassa transporters CDT-1 and CDT-2. Transporter ST16 from Trichoderma virens enables faster aerobic growth of S. cerevisiae on xylodextrins compared to CDT-2. ST16 is a xylodextrin-specific transporter, and the xylobiose transport activity of ST16 is not inhibited by cellobiose. Other transporters identified in the screen also enable growth on xylodextrins including xylotriose. Taken together, these results indicate that multiple transporters might prove useful to improve xylodextrin utilization in S. cerevisiae. Efforts to use directed evolution to improve ST16 from a chromosomally-integrated copy were not successful, due to background growth of yeast on other carbon sources present in the selection medium. Future experiments will require increasing the baseline growth rate of the yeast population on xylodextrins, to ensure that the selective pressure exerted on xylodextrin transport can lead to isolation of improved xylodextrin transporters.


Dextrins/metabolism , Saccharomyces cerevisiae/metabolism , Cellobiose/metabolism , Cellulose/metabolism , Neurospora crassa/metabolism , Saccharomyces cerevisiae/genetics
3.
Biotechnol Biofuels ; 8: 120, 2015.
Article En | MEDLINE | ID: mdl-26279678

BACKGROUND: Economical production of fuels and chemicals from plant biomass requires the efficient use of sugars derived from the plant cell wall. Neurospora crassa, a model lignocellulosic degrading fungus, is capable of breaking down the complex structure of the plant cell wall. In addition to cellulases and hemicellulases, N. crassa secretes lytic polysaccharide monooxygenases (LPMOs), which cleave cellulose by generating oxidized sugars-particularly aldonic acids. However, the strategies N. crassa employs to utilize these sugars are unknown. RESULTS: We identified an aldonic acid utilization pathway in N. crassa, comprised of an extracellular hydrolase (NCU08755), cellobionic acid transporter (CBT-1, NCU05853) and cellobionic acid phosphorylase (CAP, NCU09425). Extracellular cellobionic acid could be imported directly by CBT-1 or cleaved to gluconic acid and glucose by a ß-glucosidase (NCU08755) outside the cells. Intracellular cellobionic acid was further cleaved to glucose 1-phosphate and gluconic acid by CAP. However, it remains unclear how N. crassa utilizes extracellular gluconic acid. The aldonic acid pathway was successfully implemented in Saccharomyces cerevisiae when N. crassa gluconokinase was co-expressed, resulting in cellobionic acid consumption in both aerobic and anaerobic conditions. CONCLUSIONS: We successfully identified a branched aldonic acid utilization pathway in N. crassa and transferred its essential components into S. cerevisiae, a robust industrial microorganism.

4.
Elife ; 42015 Feb 03.
Article En | MEDLINE | ID: mdl-25647728

Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production.


Biofuels , Cell Wall/metabolism , Neurospora crassa/metabolism , Plants/metabolism , Xylose/metabolism
5.
Anal Biochem ; 419(2): 145-52, 2011 Dec 15.
Article En | MEDLINE | ID: mdl-21933657

The use of coenzyme Q10 (CoQ10) has been increasing rapidly during recent years due to its postulated beneficial properties in human health, providing energy and antioxidant protection. There are no known negative side effects of CoQ10 even at very high levels. Recently, native saposin B (sapB) has been shown to bind CoQ10 and subsequently be excreted. It is thought that this interaction between sapB and CoQ10 could be a mechanism to avoid any possible CoQ10 toxicity. The interaction between sapB and CoQ10 is poorly understood. Here we present an increased fermentative yield of recombinant sapB and demonstrate that recombinant sapB will bind CoQ10 in a pH-dependent manner similar to sapB binding with other lipids. SapB was coated onto an IMAC (immobilized metal affinity chromatography) resin and successfully bound CoQ10 at pH 5.0 with release of the CoQ10 at pH 9.0.


Biochemistry/methods , Histidine/metabolism , Oligopeptides/metabolism , Recombinant Proteins/metabolism , Saposins/metabolism , Ubiquinone/analogs & derivatives , Amino Acid Sequence , Chromatography, Liquid , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Humans , Hydrogen-Ion Concentration , Molecular Sequence Data , Protein Binding , Recombinant Proteins/chemistry , Resins, Synthetic , Saposins/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Ubiquinone/metabolism
...