Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3714-3724, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099346

RESUMEN

Diabetic cardiomyopathy(DCM) is a chronic complication of diabetes mellitus that leads to cardiac damage in the later stages of the disease, and its pathogenesis is complex, involving metabolic disorders brought about by a variety of aberrant alterations such as endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis, defects in cardiomyocyte Ca~(2+) transporter, and myocardial fibrosis. Currently, there is a lack of specific diagnosis and treatment in the clinic. Autophagy is a highly conserved scavenging mechanism that removes proteins, damaged organelles or foreign contaminants and converts them into energy and amino acids to maintain the stability of the intracellular environment. Inhibition of autophagy can cause harmful metabolites to accumulate in the cell, while over-activation of autophagy can disrupt normal cellular structures and cause cell death. Prolonged high glucose levels disrupt cardiomyocyte autophagy levels and exacerbate the development of DCM. The protective or detrimental effects of autophagy on cells ring true with the traditional Chinese medicine theory of healthy Qi and pathogenic Qi. Autophagy in the physiological state of the removal of intracellular substances and the generation of substances beneficial to the survival of cells is the inhibition of pathogenic Qi to help the performance of healthy Qi, so the organism is healthy. In the early stages of the disease, when autophagy is impaired and incapable of removing waste substances, pathogenic Qi is prevalent; In the later stages of the disease, excessive activation of autophagy can destroy normal cells, leading to a weakening of healthy Qi. Traditional Chinese medicine has the advantage of targeting multiple sites and pathways. Studies in recent years have confirmed that traditional Chinese medicine monomers or formulas can target autophagy, promote the restoration of autophagy levels, maintain mitochondrial and endoplasmic reticulum homeostasis, and reduce oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis in order to prevent and control DCM. This study provides a review of the relationship between autophagy and DCM and the intervention of traditional Chinese medicine in autophagy for the treatment of DCM, with a view to providing new clinical ideas and methods for the treatment of DCM with traditional Chinese medicine.


Asunto(s)
Autofagia , Cardiomiopatías Diabéticas , Medicamentos Herbarios Chinos , Medicina Tradicional China , Autofagia/efectos de los fármacos , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/fisiopatología , Humanos , Animales , Medicamentos Herbarios Chinos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos
2.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5304-5314, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114120

RESUMEN

This study aims to observe the effects of diosgenin on the expression of mammalian target of rapamycin(mTOR), sterol regulatory element-binding protein-1c(SREBP-1c), heat shock protein 60(HSP60), medium-chain acyl-CoA dehydrogenase(MCAD), and short-chain acyl-CoA dehydrogenase(SCAD) in the liver tissue of the rat model of non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin in alleviating NAFLD. Forty male SD rats were randomized into five groups: a control group, a model group, low-(150 mg·kg~(-1)·d~(-1)) and high-dose(300 mg·kg~(-1)·d~(-1)) diosgenin groups, and a simvastatin(4 mg·kg~(-1)·d~(-1)) group. The rats in the control group were fed with a normal diet, while those in the other four groups were fed with a high-fat diet. After feeding for 8 weeks, the body weight of rats in the high-fat diet groups increased significantly. After that, the rats were administrated with the corresponding dose of diosgenin or simvastatin by gavage every day for 8 weeks. The levels of triglyceride(TG), total cholesterol(TC), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were determined by the biochemical method. The levels of TG and TC in the liver were measured by the enzyme method. Oil-red O staining was employed to detect the lipid accumulation, and hematoxylin-eosin(HE) staining to detect the pathological changes in the liver tissue. The mRNA and protein levels of mTOR, SREBP-1c, HSP60, MCAD, and SCAD in the liver tissue of rats were determined by real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) and Western blot, respectively. Compared with the control group, the model group showed increased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lipid deposition in the liver, obvious hepatic steatosis, up-regulated mRNA and protein expression levels of mTOR and SREBP-1c, and down-regulated mRNA and protein expression levels of HSP60, MCAD, and SCAD. Compared with the model group, the rats in each treatment group showed obviously decreased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lessened lipid deposition in the liver, ameliorated hepatic steatosis, down-regulated mRNA and protein le-vels of mTOR and SREBP-1c, and up-regulated mRNA and protein levels of HSP60, MCAD, and SCAD. The high-dose diosgenin outperformed the low-dose diosgenin and simvastatin. Diosgenin may prevent and treat NAFLD by inhibiting the expression of mTOR and SREBP-1c and promoting the expression of HSP60, MCAD, and SCAD to reduce lipid synthesis, improving mitochondrial function, and promoting fatty acid ß oxidation in the liver.


Asunto(s)
Diosgenina , Enfermedad del Hígado Graso no Alcohólico , Ratas , Masculino , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Dieta Alta en Grasa/efectos adversos , Diosgenina/metabolismo , Chaperonina 60/metabolismo , Chaperonina 60/farmacología , Chaperonina 60/uso terapéutico , Ratas Sprague-Dawley , Hígado , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Triglicéridos , ARN Mensajero/metabolismo , Simvastatina/metabolismo , Simvastatina/farmacología , Simvastatina/uso terapéutico , Peso Corporal , Metabolismo de los Lípidos , Mamíferos/genética , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA