Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Orthop Surg Res ; 19(1): 251, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643101

BACKGROUND: To analyze the relationship between lipid metabolism, coagulation function, and bone metabolism and the contributing factor and staging of non-traumatic femoral head necrosis, and to further investigate the factors influencing the blood indicators related to the staging of non-traumatic femoral head necrosis. METHODS: The medical records of patients with femoral head necrosis were retrieved from the inpatient medical record management system, and the lipid metabolism, bone metabolism, and coagulation indices of non-traumatic femoral head necrosis (including alcoholic, hormonal, and idiopathic group) were obtained according to the inclusion and exclusion criteria, including Low-Density Lipoprotein Cholesterol, Triglycerides, Non-High-Density Lipoprotein Cholesterol, Apolipoprotein A1, Apolipoprotein (B), Apolipoprotein (E), Uric Acid, Alkaline Phosphatase, Bone-specific Alkaline Phosphatase, Activated Partial Thromboplastin Time, Prothrombin Time, D-dimer, Platelet count. The relationship between these blood indices and the different stages under different causative factors was compared, and the factors influencing the stages of non-traumatic femoral head necrosis were analyzed using multivariate logistic regression. RESULTS: (i) Gender, Age and BMI stratification, Low-density Lipoprotein Cholesterol, Triglycerides, Non-High-density Lipoprotein Cholesterol, Apolipoprotein (B), Apolipoprotein (E), Uric Acid, Bone-specific Alkaline Phosphatase, Activated Partial Thromboplastin Time, Plasminogen Time, D-dimer, and Platelet count of the alcohol group were statistically different when compared among the different ARCO staging groups; (ii) The differences in Age and BMI stratification, Triglycerides, Non-High-density Lipoprotein Cholesterol, Apolipoprotein A1, Apolipoprotein B, Apolipoprotein E, Uric Acid, Bone-specific Alkaline Phosphatase, Activated Partial Thromboplastin Time, Plasminogen Time, D-dimer, and Platelet count were statistically significant when compared among the different phases in the hormone group (P < 0.05); (iii) The differences in Age and BMI stratification, Non-High-Density Lipoprotein Cholesterol, Apolipoprotein A1, Apolipoprotein (B), Apolipoprotein (E), Uric Acid, Activated Partial Thromboplastin Time, D-dimer, and Platelet count were statistically significant when compared among the different stages in the idiopathic group (P < 0.05); (v) Statistically significant indicators were included in the multivariate logistic regression analysis, excluding the highly correlated bone-specific alkaline phosphatase, and the results showed that Low-density lipoprotein was negatively correlated with changes in the course of ARCO, and Non-High-Density Lipoprotein cholesterol, Apo B, Activated Partial Thromboplastin Time, and Platelet count were significantly and positively correlated with disease progression. CONCLUSION: An abnormal hypercoagulable state as well as an abnormal hyperlipidemic state are risk factors for the progression of non-traumatic femoral head necrosis under various exposure factors, as indicated by Non-High-Density Lipoprotein Cholesterol, Apolipoprotein B, Activated Fractional Thromboplastin Time, and Platelet Counts.


Apolipoprotein A-I , Femur Head Necrosis , Humans , Logistic Models , Lipid Metabolism , Alkaline Phosphatase , Uric Acid , Cholesterol , Triglycerides , Cholesterol, LDL , Plasminogen
2.
J Hazard Mater ; 424(Pt B): 127341, 2022 02 15.
Article En | MEDLINE | ID: mdl-34634702

The need in using reclaimed water increased significantly to address the water shortage and its continuing quality deterioration in sustaining societal development. Degrading micropollutants in wastewater treatment plant effluents is one of the most important tasks in supplying safe drinking water, which is often achieved by full advanced treatment technologies (FATs), including reverse osmosis (RO) and the UV-based advanced oxidation process (AOP). As an emerging AOP, UV/chloramine process shows many noteworthy advantages in the scenario of potable water reuse, including membrane biological fouling control by chloramine, producing highly reactive radicals (e.g., Cl•, HO•, Cl2•-, and reactive nitrogen-containing species) to degrade the RO permeated pollutants, and acting as long-lasting disinfectant in the potable water distribution system. In addition, chloramine is often designedly produced by taking advantage of the ammonia in source. Thus, UV/chloramine processes gather much attention from researcher and published papers on UV/chloramine process have drastically increased since 2016, which were thoroughly reviewed in this paper. The fundamentals of chloramine photolysis, including the photolysis kinetics, the quantum yield, the generation and transformation of radicals and the final products, were scrutinized. Further, the impacts of reaction conditions such as pH, chloramine dosage and water matrix on the degradation of micropollutants by the UV/chloramine process are discussed. Moreover, the formation potential of disinfection by-products is debated. The opportunity of application of the UV/chloramine process in real-world practice is also presented, emphasizing the need for extensive efforts to remove currently prevalent knowledge roadblocks.


Drinking Water , Water Pollutants, Chemical , Water Purification , Chloramines , Hydrogen Peroxide , Oxidation-Reduction , Ultraviolet Rays , Wastewater/analysis
3.
Sci Total Environ ; 778: 146203, 2021 Jul 15.
Article En | MEDLINE | ID: mdl-33711594

Vertical flow constructed wetlands (VF CWs) are widely applied for treating eutrophic water due to prominent advantages in economy and ecology. Natural inorganic particles are ubiquitous in contaminated water and the accumulation of inorganic particles takes place spontaneously in VF CWs. To reveal how the accumulation of inorganic particles affects the transport and transformation of phosphorus (P) and nitrogen (N) in VF CWs, column experiments with and without inorganic particle loading were conducted for over 180 days. The morphology and mass balance of P and N, microbial community structure and hydraulic characteristics of VF CWs were investigated. The average total phosphorus (TP) and total nitrogen (TN) removal efficiencies in VF CWs with inorganic particle loading were steady at 90.4 ± 1.9% and 87.8 ± 2.3%, respectively. Inorganic particle accumulation improved TP removal mainly via adsorption and plant uptake, while enhanced TN removal was mainly attributed to higher plant uptake and microbial degradation. Of particular interest was that plant biomass production was doubled by the concentrated nutrients (e.g., bioavailable P and N) in the rhizosphere, accompanied by the accumulation of inorganic particles up to 9.5 g L-1. Accumulated particles increased the bacterial abundance by 7.7-fold, and the diversity of the bacterial community associated with P and N transformations was significantly enhanced (p < 0.05). 31P NMR and P fractionation revealed that the elevated P proportion in the substrate was mainly in the form of iron-bound inorganic P. Moreover, inorganic particle accumulation decreased the substrate hydraulic conductivity, while it showed limited effect on the reduction of the hydraulic retention time.

4.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1205-1210, 2021 Mar.
Article Zh | MEDLINE | ID: mdl-33787116

To explore the effect of Baihe Dihuang Decoction on the synaptic plasticity of hippocampal neurons in rats with anxious depression. Fifty SD rats were randomly divided into normal group, model group, venlafaxine group(6.75 mg·kg~(-1)), high-dose Baihe Dihuang Decoction group(8.64 g·kg~(-1)) and low-dose Baihe Dihuang Decoction group(4.32 g·kg~(-1)). Chronic restraint stress(6 h) combined with corticosterone(ih, 30 mg·kg~(-1)) was used to establish an anxious depression model, and 7 days after modeling, the administration started and continued for 21 days. The anxiety and depression-like behaviors of the rats were evaluated. Golgi-Cox staining and electron microscopy were used to observe the morphology and ultrastructural changes of synaptic dendrites. Immunofluorescence was used to detect the expression of hippocampal synaptic plasticity protein synapsin-1 and postsynaptic density protein 95(PSD-95). Western blot method was used to detect the expression of functional protein synaptophysin(SYP) and synaptic Ras GTPase activating protein(SynGap). The results showed that the rats in the model group had obvious anxiety and depression-like behaviors, the hip-pocampal dendritic spine density and branch length were reduced, the number of synapses was cut, and the internal structure was da-maged. The average fluorescence intensity of synapsin-1 and PSD-95 was significantly reduced and the expression of SYP and SynGap also decreased. High-dose Baihe Dihuang Decoction could significantly improve the anxiety and depression-like behaviors of model rats, relieve synaptic damage, and increase the expression of synapsin-1, PSD-95, SYP, and SynGap proteins. Therefore, we believe that Baihe Dihuang Decoction can improve anxiety and depression behaviors by regulating the synaptic plasticity of hippocampal neurons.


Depression , Neuronal Plasticity , Animals , Depression/drug therapy , Hippocampus , Rats , Rats, Sprague-Dawley , Synapses
...