Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Nat Commun ; 15(1): 1677, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38395971

Efficient upconversion electroluminescence is highly desirable for a broad range of optoelectronic applications, yet to date, it has been reported only for ensemble systems, while the upconversion electroluminescence efficiency remains very low for single-molecule emitters. Here we report on the observation of anomalously bright single-molecule upconversion electroluminescence, with emission efficiencies improved by more than one order of magnitude over previous studies, and even stronger than normal-bias electroluminescence. Intuitively, the improvement is achieved via engineering the energy-level alignments at the molecule-substrate interface so as to activate an efficient spin-triplet mediated upconversion electroluminescence mechanism that only involves pure carrier injection steps. We further validate the intuitive picture with the construction of delicate electroluminescence diagrams for the excitation of single-molecule electroluminescence, allowing to readily identify the prerequisite conditions for producing efficient upconversion electroluminescence. These findings provide deep insights into the microscopic mechanism of single-molecule upconversion electroluminescence and organic electroluminescence in general.

2.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Article En | MEDLINE | ID: mdl-37862523

We report the design and realization of the back focal plane (BFP) imaging for the light emission from a tunnel junction in a low-temperature ultrahigh-vacuum (UHV) scanning tunneling microscope (STM). To achieve the BFP imaging in a UHV environment, a compact "all-in-one" sample holder is designed and fabricated, which allows us to integrate the sample substrate with the photon collection units that include a hemisphere solid immersion lens and an aspherical collecting lens. Such a specially designed holder enables the characterization of light emission both within and beyond the critical angle and also facilitates the optical alignment inside a UHV chamber. To test the performance of the BFP imaging system, we first measure the photoluminescence from dye-doped polystyrene beads on a thin Ag film. A double-ring pattern is observed in the BFP image, arising from two kinds of emission channels: strong surface plasmon coupled emissions around the surface plasmon resonance angle and weak transmitted fluorescence maximized at the critical angle, respectively. Such an observation also helps to determine the emission angle for each image pixel in the BFP image and, more importantly, proves the feasibility of our BFP imaging system. Furthermore, as a proof-of-principle experiment, electrically driven plasmon emissions are used to demonstrate the capability of the constructed BFP imaging system for STM induced electroluminescence measurements. A single-ring pattern is obtained in the BFP image, which reveals the generation and detection of the leakage radiation from the surface plasmon propagating on the Ag surface. Further analyses of the BFP image provide valuable information on the emission angle of the leakage radiation, the orientation of the radiating dipole, and the plasmon wavevector. The UHV-BFP imaging technique demonstrated here opens new routes for future studies on the angular distributed emission and dipole orientation of individual quantum emitters in UHV.

3.
Nat Nanotechnol ; 17(7): 729-736, 2022 Jul.
Article En | MEDLINE | ID: mdl-35668169

Quantum-coherent intermolecular energy transfer is believed to play a key role in light harvesting in photosynthesis and photovoltaics. So far, a direct, real-space demonstration of quantum coherence in donor-acceptor systems has been lacking because of the fragile quantum coherence in lossy molecular systems. Here, we precisely control the separations in well-defined donor-acceptor model systems and unveil a transition from incoherent to coherent electronic energy transfer. We monitor the fluorescence from the heterodimers with subnanometre resolution through scanning tunnelling microscopy induced luminescence. With decreasing intermolecular distance, the dipole coupling strength increases and two new emission peaks emerge: a low-intensity peak blueshifted from the donor emission, and an intense peak redshifted from the acceptor emission. Spatially resolved spectroscopic images of the redshifted emission exhibit a σ antibonding-like pattern and thus indicate a delocalized nature of the excitonic state over the whole heterodimer due to the in-phase superposition of molecular excited states. These observations suggest that the exciton can travel coherently through the whole heterodimer as a quantum-mechanical wavepacket. In our model system, the wavelike quantum-coherent transfer channel is three times more efficient than the incoherent channel.

4.
Nat Commun ; 12(1): 1280, 2021 Feb 24.
Article En | MEDLINE | ID: mdl-33627671

Vibronic coupling is a central issue in molecular spectroscopy. Here we investigate vibronic coupling within a single pentacene molecule in real space by imaging the spatial distribution of single-molecule electroluminescence via highly localized excitation of tunneling electrons in a controlled plasmonic junction. The observed two-spot orientation for certain vibronic-state imaging is found to be evidently different from the purely electronic 0-0 transition, rotated by 90°, which reflects the change in the transition dipole orientation from along the molecular short axis to the long axis. Such a change reveals the occurrence of strong vibronic coupling associated with a large Herzberg-Teller contribution, going beyond the conventional Franck-Condon picture. The emergence of large vibration-induced transition charges oscillating along the long axis is found to originate from the strong dynamic perturbation of the anti-symmetric vibration on those carbon atoms with large transition density populations during electronic transitions.

5.
J Chem Phys ; 154(4): 044309, 2021 Jan 28.
Article En | MEDLINE | ID: mdl-33514086

In this work, we showcase applications of single-molecule Fano resonance (SMFR) measurements beyond the determination of molecular excitonic energy and associated dipole orientation. We use the SMFR measurement to probe the local influence of a man-made single chlorine vacancy on the molecular transition of a single zinc phthalocyanine, which clearly reveals the lifting-up of the double degeneracy of the excited states due to defect-induced configurational changes. Furthermore, time-trace SMFR measurements at different excitation voltages are used to track the tautomerization process in a free-base phthalocyanine. Different behaviors in switching between two inner-hydrogen configurations are observed with decreasing voltages, which helps to reveal the underlying tautomerization mechanism involving both the molecular electronic excited states and vibrational excited states in the ground state.

6.
Nat Commun ; 8(1): 580, 2017 09 18.
Article En | MEDLINE | ID: mdl-28924226

Electrically driven molecular light emitters are considered to be one of the promising candidates as single-photon sources. However, it is yet to be demonstrated that electrically driven single-photon emission can indeed be generated from an isolated single molecule notwithstanding fluorescence quenching and technical challenges. Here, we report such electrically driven single-photon emission from a well-defined single molecule located inside a precisely controlled nanocavity in a scanning tunneling microscope. The effective quenching suppression and nanocavity plasmonic enhancement allow us to achieve intense and stable single-molecule electroluminescence. Second-order photon correlation measurements reveal an evident photon antibunching dip with the single-photon purity down to g (2)(0) = 0.09, unambiguously confirming the single-photon emission nature of the single-molecule electroluminescence. Furthermore, we demonstrate an ultrahigh-density array of identical single-photon emitters.Molecular emitters offer a promising solution for single-photon generation. Here, by exploiting electronic decoupling by an ultrathin dielectric spacer and emission enhancement by a resonant plasmonic nanocavity, the authors demonstrate electrically driven single-photon emission from a single molecule.

7.
Nat Commun ; 8: 15225, 2017 05 19.
Article En | MEDLINE | ID: mdl-28524881

The coherent interaction between quantum emitters and photonic modes in cavities underlies many of the current strategies aiming at generating and controlling photonic quantum states. A plasmonic nanocavity provides a powerful solution for reducing the effective mode volumes down to nanometre scale, but spatial control at the atomic scale of the coupling with a single molecular emitter is challenging. Here we demonstrate sub-nanometre spatial control over the coherent coupling between a single molecule and a plasmonic nanocavity in close proximity by monitoring the evolution of Fano lineshapes and photonic Lamb shifts in tunnelling electron-induced luminescence spectra. The evolution of the Fano dips allows the determination of the effective interaction distance of ∼1 nm, coupling strengths reaching ∼15 meV and a giant self-interaction induced photonic Lamb shift of up to ∼3 meV. These results open new pathways to control quantum interference and field-matter interaction at the nanoscale.

8.
Nature ; 531(7596): 623-7, 2016 Mar 31.
Article En | MEDLINE | ID: mdl-27029277

Many important energy-transfer and optical processes, in both biological and artificial systems, depend crucially on excitonic coupling that spans several chromophores. Such coupling can in principle be described in a straightforward manner by considering the coherent intermolecular dipole-dipole interactions involved. However, in practice, it is challenging to directly observe in real space the coherent dipole coupling and the related exciton delocalizations, owing to the diffraction limit in conventional optics. Here we demonstrate that the highly localized excitations that are produced by electrons tunnelling from the tip of a scanning tunnelling microscope, in conjunction with imaging of the resultant luminescence, can be used to map the spatial distribution of the excitonic coupling in well-defined arrangements of a few zinc-phthalocyanine molecules. The luminescence patterns obtained for excitons in a dimer, which are recorded for different energy states and found to resemble σ and π molecular orbitals, reveal the local optical response of the system and the dependence of the local optical response on the relative orientation and phase of the transition dipoles of the individual molecules in the dimer. We generate an in-line arrangement up to four zinc-phthalocyanine molecules, with a larger total transition dipole, and show that this results in enhanced 'single-molecule' superradiance from the oligomer upon site-selective excitation. These findings demonstrate that our experimental approach provides detailed spatial information about coherent dipole-dipole coupling in molecular systems, which should enable a greater understanding and rational engineering of light-harvesting structures and quantum light sources.

9.
J Am Chem Soc ; 135(42): 15794-800, 2013 Oct 23.
Article En | MEDLINE | ID: mdl-24066644

A self-decoupled porphyrin with a tripodal anchor has been synthesized and deposited on Au(111) using different wet-chemistry methods. Nanoscale electroluminescence from single porphyrin molecules or aggregates on Au(111) has been realized by tunneling electron excitation. The molecular origin of the luminescence is established by the vibrationally resolved fluorescence spectra observed. The rigid tripodal anchor not only acts as a decoupling spacer but also controls the orientation of the molecule. Intense molecular electroluminescence can be obtained from the emission enhancement provided by a good coupling between the molecular transition dipole and the axial nanocavity plasmon. The unipolar performance of the electroluminescence from the designed tripodal molecule suggests that the porphyrin molecule is likely to be excited by the injection of hot electrons, and then the excited state decays radiatively through Franck-Condon π*-π transitions. These results open up a new route to generating electrically driven nanoscale light sources.

...