Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 71
1.
Sci Total Environ ; 931: 172712, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38677439

The phyllosphere microbiome of vegetable products constitutes an important reservoir for multidrug resistant bacteria and Antibiotic Resistance Genes (ARG). Vegetable products including fermented products such as Paocai therefore may serve as a shuttle for extrinsic microorganisms with ARGs into the gut of consumers. Here we study the effect of fermentation on Paocai ARG dissemination by metagenomic analysis. Microbial abundance and diversity of the Paocai microbiome were diminished during fermentation, which correlated with the reduction of abundance in ARGs. Specifically, as fermentation progressed, Enterobacterales overtook Pseudomonadales as the predominant ARG carriers, and Lactobacillales and Enterobacteriales became the determinants of Paocai resistome variation. Moreover, the dual effect of microbes and metal resistance genes (MRGs) was the major contributor driving Paocai resistome dynamics. We recovered several metagenome-assembled genomes (MAGs) carrying acquired ARGs in the phyllosphere microbiome. ARGs of potential clinical and epidemiological relevance such as tet M and emrB-qacA, were mainly hosted by non-dominant bacterial genera. Overall, our study provides evidence that changes in microbial community composition by fermentation aid in constraining ARG dispersal from raw ingredients to the human microbiome but does not eliminate them.


Fermentation , Microbiota , Microbiota/drug effects , Bacteria/genetics , Genes, Bacterial , Metagenome , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Vegetables/microbiology , Humans , Diet
2.
Chemosphere ; 358: 142152, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679178

In recent years, filamentous algae blooms and microplastics (MPs) pollution have become two major ecological and environmental problems in urban water systems. In order to solve these two problems at the same time, this study explored the loading capacity of MPs on fresh filamentous algae, and successfully synthesized magnetic filamentous algae biochar loading with Fe3O4 by hydrothermal method, with the purpose of removing MPs from water. The magnetic filamentous algal biochar was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and so on. Experiments on adsorption kinetics, adsorption isotherms and optimum pH were carried out to explore the adsorption mechanism of MPs on magnetic filamentous algal biochar. The adsorption kinetics and adsorption isotherm models were evaluated, and the selection criterion for the appropriate model was determined by using the residual sum of squares (RSS) and Bayesian information criterion (BIC). Microscope images revealed that fresh filamentous algae could interact with MPs in the form of entanglement, adhesion and encapsulation. The average load of MPs in filamentous algae samples was 14.1 ± 5 items/g dry weight. The theoretical maximum adsorption capacities of polystyrene MPs (PS-MPs) by raw biochar (A500) and magnetic biochar with Fe3O4 (M2A500) were 176.99 mg/g and 215.58 mg/g, respectively. The adsorbent materials gave better reusability because they could be reused up to five times. Overall, these findings have provided new insights into the use of filamentous algae for in situ remediation of fluvial MPs pollution, as well as feasible strategies for the recycling of algal waste.


Charcoal , Microplastics , Water Pollutants, Chemical , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Kinetics
3.
Bioresour Bioprocess ; 11(1): 4, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38647898

Lignocellulose pretreated using pyrolysis can yield clean energy (such as bioethanol) via microbial fermentation, which can significantly contribute to waste recycling, environmental protection, and energy security. However, the acids, aldehydes, and phenols present in bio-oil with inhibitory effects on microorganisms compromise the downstream utilization and conversion of lignocellulosic pyrolysates. In this study, we constructed a microbial electrolysis cell system for bio-oil detoxification and efficient ethanol production using evolved Escherichia coli to overcome the bioethanol production and utilization challenges highlighted in previous studies. In electrically treated bio-oil media, the E. coli-H strain exhibited significantly higher levoglucosan consumption and ethanol production capacities compared with the control. In undetoxified bio-oil media containing 1.0% (w/v) levoglucosan, E. coli-H produced 0.54 g ethanol/g levoglucosan, reaching 94% of the theoretical yield. Our findings will contribute to developing a practical method for bioethanol production from lignocellulosic substrates, and provide a scientific basis and technical demonstration for its industrialized application.

4.
Chem Sci ; 15(5): 1894-1905, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38303933

Tuning the electron distribution of metal single-atom active sites via bimetallic clusters is an effective way to enhance their hydrogen evolution reaction (HER) activity, but remains a great challenge. A biochar-based electrocatalyst (BCMoMn800-2) with both MnN4 active sites and Mo2C/Mn7C3 clusters was synthesized using in situ enriched Mo/Mn biomass as a precursor to trigger the HER. Various characterization and density functional theory (DFT) calculation results indicated that the presence of Mo2C/Mn7C3 clusters in BCMoMn800-2 effectively induced the redistribution of charges at MnN4 sites, reducing the energy of H* activation during the HER. In 0.5 M H2SO4, the overpotential was 27.4 mV at a current density of 10 mA cm-2 and the Tafel slope was 31 mV dec-1, and its electrocatalytic performance was close to that of Pt/C. The electrocatalyst also exhibited excellent electrocatalytic stability and durability. This work might provide a new strategy for solid waste recycling and constructing efficient HER electrocatalysts.

5.
Environ Int ; 184: 108448, 2024 Feb.
Article En | MEDLINE | ID: mdl-38246038

Biosurfactants-based bioremediation is considered an efficient technology to eliminate environmental pollutants including polycyclic aromatic hydrocarbons (PAHs). However, the precise role of rhamnolipids or lipopeptide-biosurfactants in mixed PAH dissipation, shaping microbial community structure, and influencing metabolomic profile remained unclear. In this study, results showed that the maximum PAH degradation was achieved in lipopeptide-assisted treatment (SPS), where the pyrene and phenanthrene were substantially degraded up to 74.28 % and 63.05 % respectively, as compared to rhamnolipids (SPR) and un-aided biosurfactants (SP). Furthermore, the high throughput sequencing analysis revealed a significant change in the PAH-degrading microbial community, with Proteobacteria being the predominant phylum (>98 %) followed by Bacteroidota and Firmicutes in all the treatments. Moreover, Pseudomonas and Pannonibacter were found as highly potent bacterial genera for mixed PAH degradation in SPR, SPS, and SP treatments, nevertheless, the abundance of the genus Pseudomonas was significantly enhanced (>97 %) in SPR treatment groups. On the other hand, the non-targeted metabolomic profile through UHPLC-MS/MS exhibited a remarkable change in the metabolites of amino acids, carbohydrates, and lipid metabolisms by the input of rhamnolipids or lipopeptide-biosurfactants whereas, the maximum intensities of metabolites (more than two-fold) were observed in SPR treatment. The findings of this study suggested that the aforementioned biosurfactants can play an indispensable role in mixed PAH degradation as well as seek to offer new insights into shifts in PAH-degrading microbial communities and their metabolic function, which can guide the development of more efficient and targeted strategies for complete removal of organic pollutants such as PAH from the contaminated environment.


Environmental Pollutants , Microbiota , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/metabolism , Tandem Mass Spectrometry , Soil Pollutants/metabolism , Biodegradation, Environmental , Lipopeptides , Soil Microbiology
6.
J Mol Cell Biol ; 15(7)2024 01 05.
Article En | MEDLINE | ID: mdl-37533201

The effective proliferation and differentiation of trophoblast stem cells (TSCs) is indispensable for the development of the placenta, which is the key to maintaining normal fetal growth during pregnancy. Kruppel-like factor 5 (Klf5) is implicated in the activation of pluripotency gene expression in embryonic stem cells (ESCs), yet its function in TSCs is poorly understood. Here, we showed that Klf5 knockdown resulted in the downregulation of core TSC-specific genes, consequently causing rapid differentiation of TSCs. Consistently, Klf5-depleted embryos lost the ability to establish TSCs in vitro. At the molecular level, Klf5 preferentially occupied the proximal promoter regions and maintained an open chromatin architecture of key TSC-specific genes. Deprivation of Klf5 impaired the enrichment of p300, a major histone acetyl transferase of H3 lysine 27 acetylation (H3K27ac), and further reduced the occupancy of H3K27ac at promoter regions, leading to decreased transcriptional activity of TSC pluripotency genes. Thus, our findings highlight a novel mechanism of Klf5 in regulating the self-renewal and differentiation of TSCs and provide a reference for understanding placental development and improving pregnancy rates.


Placenta , Transcription Factors , Female , Pregnancy , Humans , Placenta/metabolism , Transcription Factors/metabolism , Trophoblasts/metabolism , Cell Differentiation/genetics , Embryonic Stem Cells/metabolism
7.
Sci Total Environ ; 912: 168861, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38013103

The terrestrial anaerobic methane oxidation (AOM) coupled with denitrification is considered to be an important link in the "cryptic cycle of methane". However, it remains uncertain how land use activity such as biochar and livestock dung amendments regulate the AOM in grassland. Here, we incubated soils with biochar and dung amendments in microcosms to monitor the AOM activity and quantified the maker genes of anaerobic methanotrophs and their potential syntrophs. Dung enhanced the AOM mediated by Candidatus Methylomirabilis oxyfera and stimulated denitrifying bacteria and anammox growths as well. The biochar amendment inhibited AOM due to the trapping of NO3- and NO2-. Our study raised the possibility that anthropogenic activity can regulate AOM through porosity alteration and substrate limitation.


Archaea , Charcoal , Livestock , Animals , Archaea/genetics , Methane , Anaerobiosis , Grassland , Bacteria/genetics , Oxidation-Reduction
8.
Environ Technol ; : 1-9, 2023 Nov 16.
Article En | MEDLINE | ID: mdl-37970872

Dimethylsulfoniopropionate (DMSP) is a vital sulfur-containing compound with worldwide significance, serving as the primary precursor for dimethyl sulfide (DMS), a volatile sulfur compound that plays a role in atmospheric chemistry and influences the Earth's climate on a global scale. The study investigated the ability of four bacterial strains, namely Acidimangrovimonas sediminis MS2-2 (MS2-2), Hartmannibacter diazotrophicus E18T (E18T), Rhizobium lusitanum 22705 (22705), and Nitrospirillum iridis DSM22198 (DSM22198), to produce and degrade DMSP. These strains were assessed for their DMSP synthesis ability with the mmtN linked to non-ribosomal peptide synthase (NRPS) gene. The results showed that MS2-2, and E18T bacteria, which contained the mmtN but not linked to an NRPS gene, increased DMSP production with increasing salinity. The highest production of DMSP was achieved at 25 PSU when either methionine was added or low nitrogen conditions were present, yielding 1656.03 ± 41.04 and 265.59 ± 9.17 nmol/mg protein, respectively, and subsequently under the conditions of methionine addition or low nitrogen, both strains reached their maximum DMSP production at 25 PSU. Furthermore, the strains MS2-2, E18T, and 22705 with the mmtN gene but not linked to an NRPS gene were found to be involved in DMS production. This research contributes to the understanding of the genes involved in DMSP biosynthesis in bacteria that produce DMSP.

9.
Environ Pollut ; 331(Pt 1): 121856, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37211227

Arsenite is commonly used as an insecticide, antiseptic and herbicide. It can enter the food chain via through soil contamination, and harm human health, including the reproductive systems. Early embryos, as the initial stage of mammalian life, are very sensitive to the environmental toxins and pollutants. However, whether and how arsenite disturbs the early embryo development remains unclear. Our study used mouse early embryos as a model and revealed that arsenite exposure did not cause reactive oxygen species production, DNA damage or apoptosis. However, arsenite exposure arrested embryonic development at the 2-cell stage by altering gene expression patterns. The transcriptional profile in the disrupted embryos showed abnormal maternal-to-zygote transition (MZT). More importantly, arsenite exposure attenuated H3K27ac modification enrichment at the promoter region of Brg1, a key gene for MZT, which inhibited its transcription, and further affected MZT and early embryonic development. In conclusion our study highlights arsenite exposure affects MZT by reducing the enrichment of H3K27ac on the embryonic genome, and ultimately induces early embryonic development arrest at the 2-cell stage.


Arsenites , Zygote , Pregnancy , Female , Humans , Animals , Mice , Zygote/metabolism , Arsenites/toxicity , Arsenites/metabolism , Embryonic Development/genetics , Mammals/genetics , Mammals/metabolism , Gene Expression Regulation, Developmental
10.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article En | MEDLINE | ID: mdl-37108632

Cell cryopreservation is widely used for porcine genetic conservation; however, isolating and freezing primary cells in farms without adequate experimental equipment and environment poses a significant challenge. Therefore, it is necessary to establish a quick and simple method to freeze tissues on-site, which can be used for deriving primary fibroblasts when needed to achieve porcine genetic conservation. In this study, we explored a suitable approach for porcine ear tissue cryopreservation. The porcine ear tissues were cut into strips and frozen by direct cover vitrification (DCV) in the cryoprotectant solution with 15% EG, 15% DMSO and 0.1 M trehalose. Histological analysis and ultrastructural evaluation revealed that thawed tissues had normal tissue structure. More importantly, viable fibroblasts could be derived from these tissues frozen in liquid nitrogen for up to 6 months. Cells derived from thawed tissues did not show any cell apoptosis, had normal karyotypes and could be used for nuclear transfer. These results suggest that this quick and simple ear tissue cryopreservation method can be applied for porcine genetic conservation, especially in the face of a deadly emerging disease in pigs.


Cryopreservation , Vitrification , Animals , Swine , Cryopreservation/methods , Freezing , Cryoprotective Agents/pharmacology , Apoptosis
11.
J Hazard Mater ; 445: 130593, 2023 Mar 05.
Article En | MEDLINE | ID: mdl-37055996

In this study, a novel γ-Fe2O3/biochar (BFγ) composite by a plant in-situ enrichment and one-step pyrolysis strategy was prepared, which was applied as a photocatalyst to activate peroxymonosulfate (PMS) for the degradation of p-chlorophenol (4-CP) under visible light irradiation (BFγ/PMS/Vis) system. The characterization results exhibited that γ-Fe2O3 with localized carbon doping was evenly embedded in biochar during the pyrolysis. BFγ exhibited better photoresponse properties than biochar (BC) and γ-Fe2O3. The removal efficiency of this system for 4-CP reached 96.41% under optimal conditions. This system showed high removal efficiency with a wide pH range (3.0-13.0) and under conditions of different organic pollutants. It also showed strong resistance to interference with co-existing inorganic ions and humic acid (HA). Electron paramagnetic resonance (EPR) and radical scavenging experiments revealed that the reactive oxygen species (ROS) in this system included SO4-·, ·OH, ·O2- and 1O2. The density functional theoretical (DFT) calculations further revealed the promotion of localized carbon doping in γ-Fe2O3 on electron transfer and photoresponse, including C-O bond (d=1.29 Å), C-Fe bond (d=1.80 Å) and band gap value (Egap < 0.72 eV). This study provides new insights into constructing environmentally-friendly catalysts and the possibility of the solid waste recycling for other wetland plants.

12.
Nanomaterials (Basel) ; 13(5)2023 Feb 21.
Article En | MEDLINE | ID: mdl-36903672

In this paper, we propose an optically controlling broadband terahertz modulator of a layer-dependent PtSe2 nanofilm based on a high-resistance silicon substrate. Through optical pump and terahertz probe system, the results show that compared with 6-, 10-, and 20-layer films, a 3-layer PtSe2 nanofilm has better surface photoconductivity in the terahertz band and has a higher plasma frequency ωp of 0.23 THz and a lower scattering time τs of 70 fs by Drude-Smith fitting. By the terahertz time-domain spectroscopy system, the broadband amplitude modulation of a 3-layer PtSe2 film in the range of 0.1-1.6 THz was obtained, and the modulation depth reached 50.9% at a pump density of 2.5 W/cm2. This work proves that PtSe2 nanofilm devices are suitable for terahertz modulators.

13.
Water Res ; 232: 119709, 2023 Apr 01.
Article En | MEDLINE | ID: mdl-36764107

The ecological behavior of bacteriophages (phages), the most abundant biological entity in wastewater treatment systems, is poorly understood, especially that of temperate phages. Here, the temporal dynamics of lytic and temperate phages in a laboratory-scale activated sludge reactor with a sludge bulking issue was investigated using coupled sludge metagenomic and viromic analyses. The lysogenic fragments (prophages) identified were widely distributed in the reconstructed metagenome-assembled genomes (61.7%, n = 227). However, only 12.3% of the identified prophages experienced lysogenic-lytic switching, and the abundance contribution of prophages to free virus communities was only 0.02-0.3%, indicating low activity of temperate phages. Although the sludge community changed dramatically during reactor operation, no massive prophage induction events were detected. Statistical analyses showed strong correlations between sludge concentration and free virus and temperate phage communities, suggesting microbial density-dependent virus dynamics in the sludge microbiota.


Bacteriophages , Microbiota , Sewage , Lysogeny , Prophages
14.
Autophagy ; 19(1): 163-179, 2023 01.
Article En | MEDLINE | ID: mdl-35404187

Macroautophagy/autophagy is a cellular and energy homeostatic mechanism that contributes to maintain the number of primordial follicles, germ cell survival, and anti-ovarian aging. However, it remains unknown whether autophagy in granulosa cells affects oocyte maturation. Here, we show a clear tendency of reduced autophagy level in human granulosa cells from women of advanced maternal age, implying a potential negative correlation between autophagy levels and oocyte quality. We therefore established a co-culture system and show that either pharmacological inhibition or genetic ablation of autophagy in granulosa cells negatively affect oocyte quality and fertilization ability. Moreover, our metabolomics analysis indicates that the adverse impact of autophagy impairment on oocyte quality is mediated by downregulated citrate levels, while exogenous supplementation of citrate can significantly restore the oocyte maturation. Mechanistically, we found that ACLY (ATP citrate lyase), which is a crucial enzyme catalyzing the cleavage of citrate, was preferentially associated with K63-linked ubiquitin chains and recognized by the autophagy receptor protein SQSTM1/p62 for selective autophagic degradation. In human follicles, the autophagy level in granulosa cells was downregulated with maternal aging, accompanied by decreased citrate in the follicular fluid, implying a potential correlation between citrate metabolism and oocyte quality. We also show that elevated citrate levels in porcine follicular fluid promote oocyte maturation. Collectively, our data reveal that autophagy in granulosa cells is a beneficial mechanism to maintain a certain degree of citrate by selectively targeting ACLY during oocyte maturation.Abbreviations: 3-MA: 3-methyladenine; ACLY: ATP citrate lyase; AMA: advanced maternal age; CG: cortical granule; CHX: cycloheximide; CQ: chloroquine; CS: citrate synthase; COCs: cumulus-oocyte-complexes; GCM: granulosa cell monolayer; GV: germinal vesicle; MII: metaphase II stage of meiosis; PB1: first polar body; ROS: reactive oxygen species; shRNA: small hairpin RNA; SQSTM1/p62: sequestosome 1; TCA: tricarboxylic acid; TOMM20/TOM20: translocase of outer mitochondrial membrane 20; UBA: ubiquitin-associated domain; Ub: ubiquitin; WT: wild-type.


ATP Citrate (pro-S)-Lyase , Macroautophagy , Female , Humans , Animals , Swine , Sequestosome-1 Protein/metabolism , ATP Citrate (pro-S)-Lyase/metabolism , Citric Acid/metabolism , Autophagy , Oocytes/metabolism , Citrates/metabolism , Acyltransferases/metabolism , Ubiquitin/metabolism , Homeostasis
15.
Carbohydr Res ; 523: 108709, 2023 Jan.
Article En | MEDLINE | ID: mdl-36368078

To explore the catalytic effect of boric acid on biomass, cellulose loaded with boric acid was roasted by a tubular furnace. The gaseous products were adsorbed by activated carbon and then analyzed by GC-MS. Boric acid was shown to improve the selectivity of the product levoglucosenone (LGO). The effects of the parameters such as boric acid loading, nitrogen flow, and temperature on the torrefaction behavior of cellulose were investigated. In the studied temperature range of 240-420 °C, the yield of LGO first increases and then decreases. In addition, its yield increases directly with increasing nitrogen flow rate. The results show that the highest LGO yield of 6.64% (analytical value) can be obtained under 10% (w/w) boric acid loading, 380 °C and nitrogen flow rate of 65 ml/min conditions.


Boric Acids , Cellulose , Temperature , Nitrogen , Biomass
16.
Chemosphere ; 311(Pt 1): 136979, 2023 Jan.
Article En | MEDLINE | ID: mdl-36309062

Currently, researchers have focused on electrokinetic (EK) bioremediation due to its potential to remove a wide-range of pollutants. Further, to improve their performance, synthetic surfactants are employed as effective additives because of their excellent solubility and mobility. Synthetic surfactants have an excessive position in industries since they are well-established, cheap, and easily available. Nevertheless, these surfactants have adverse environmental effects and could be detrimental to aquatic and terrestrial life. Owing to social and environmental awareness, there is a rising demand for bio-based surfactants in the global market, from environmental sustainability to public health, because of their excellent surface and interfacial activity, higher and stable emulsifying property, biodegradability, non- or low toxicity, better selectivity and specificity at extreme environmental conditions. Unfortunately, challenges to biosurfactants, like expensive raw materials, low yields, and purification processes, hinder their applicability to large-scale. To date, extensive research has already been conducted for production scale-up using multidisciplinary approaches. However, it is still essential to research and develop high-yielding bacteria for bioproduction through traditional and biotechnological advances to reduce production costs. Herein, this review evaluates the recent progress made on microbial-surfactants for bioproduction scale-up and provides detailed information on traditional and advanced genetic engineering approaches for cost-effective bioproduction. Furthermore, this study emphasized the role of electrokinetic (EK) bioremediation and discussed the application of BioS-mediated EK for various pollutants remediation.


Environmental Pollutants , Environmental Restoration and Remediation , Soil Pollutants , Surface-Active Agents , Soil Pollutants/analysis , Biodegradation, Environmental , Bacteria
17.
Sci Rep ; 12(1): 17779, 2022 10 22.
Article En | MEDLINE | ID: mdl-36273038

In this current research, the left-over residues collected from the dark fermentation-microbial electrolysis cells (DF-MEC) integrated system solely biocatalyzed by activated sludge during the bioconversion of the agricultural straw wastes into hydrogen energy, was investigated for its feasibility to be used as a potential alternative biofertilizer to the commonly costly inorganic ones. The results revealed that the electrohydrogenesis left-over residues enriched various plant growth-promoting microbial communities including Enterobacter (8.57%), Paenibacillus (1.18%), Mycobacterium (0.77%), Pseudomonas (0.65%), Bradyrhizobium (0.12%), Azospirillum (0.11%), and Mesorhizobium (0.1%) that are generally known for their ability to produce different essential phytohormones such as indole-3-acetic acid/indole acetic acid (IAA) and Gibberellins for plant growth. Moreover, they also contain both phosphate-solubilizing and nitrogen-fixing microbial communities that remarkably provide an adequate amount of assimilable phosphorus and nitrogen required for enhanced plants or crop growth. Furthermore, macro-, and micronutrients (including N, P, K, etc.) were all analyzed from the residues and detected adequate appreciate concentrations required for plant growth promotions. The direct application of MEC-effluent as fertilizer in this current study conspicuously promoted plant growth (Solanum lycopersicum L. (tomato), Capsicum annuum L. (chilli), and Solanum melongena L. (brinjal)) and speeded up flowering and fruit-generating processes. Based on these findings, electrohydrogenesis residues could undoubtedly be considered as a potential biofertilizer. Thus, this technology provides a new approach to agricultural residue control and concomitantly provides a sustainable, cheap, and eco-friendly biofertilizer that could replace the chemical costly fertilizers.


Fertilizers , Solanum lycopersicum , Fertilizers/microbiology , Soil/chemistry , Sewage/chemistry , Plant Growth Regulators , Gibberellins , Nitrogen , Soil Microbiology , Phosphorus , Phosphates , Micronutrients , Hydrogen
18.
Front Chem ; 10: 1002038, 2022.
Article En | MEDLINE | ID: mdl-36186585

Antibiotics widely exist in medical wastewater, which seriously endanger human health. With the spread of the COVID-19 and monkeypox around the world, a large number of antibiotics have been abused and discharged. How to realize the green and efficient treatment of medical wastewater has become a hot research topic. As a common electrochemical water treatment technology, electrochemical oxidation technology (EOT) could effectively achieve advanced treatment of medical wastewater. Since entering the 21st century, electrochemical oxidation water treatment technology has received more and more attention due to its green, efficient, and easy-to-operate advantages. In this study, the research progress of EOT for the treatment of medical wastewater was reviewed, including the exploration of reaction mechanism, the preparation of functional electrode materials, combining multiple technologies, and the design of high-efficiency reactors. The conclusion and outlook of EOT for medical wastewater treatment were proposed. It is expected that the review could provide prospects and guidance for EOT to treat medical wastewater.

19.
Ecotoxicol Environ Saf ; 242: 113892, 2022 Sep 01.
Article En | MEDLINE | ID: mdl-35863217

Rhamnolipid biosurfactants are multifunctional compounds that can play an indispensable role in biotechnological, biomedical, and environmental bioremediation-related fields, and have attracted significant attention in recent years. Herein, a novel strain Pseudomonas sp. S1WB was isolated from an oil-contaminated water sample. The biosurfactants produced by this strain have capabilities to reduce surface tension (SFT) at 32.75 ± 1.63 mN/m and emulsified 50.2 ± 1.13 % in liquid media containing 1 % used engine oil (UEO) as the sole carbon source. However, the lowest SFT reduction (28.25 ± 0.21), highest emulsification index (60.15 ± 0.07), and the maximum yields (900 mg/L) were achieved under optimized conditions; where, the glucose/urea and glycerol/urea combinations were found efficient carbon and nitrogen substrates for improved biosurfactants production. Biosurfactants product was characterized using ultra-high performance liquid chromatography-mass spectrometry (UHPLC- MS) and detected various di- rhamnolipids congeners. In addition, the di-rhamnolipids produced by S1WB strain was found highly stable in terms of surface activity and EI indices at different environmental factors i.e. temperature, pH and various NaCl concentrations, where, emulsifying property was found high stable till 30 days of incubation. Moreover, the stain was capable to degrade hydrocarbon at 42.2 ± 0.04 %, and the Gas chromatography- mass spectrometry (GC-MS) profile showed the majority of peak intensities of hydrocarbons have been completely degraded compared to control.


Petroleum , Biodegradation, Environmental , Carbon , Glycolipids/chemistry , Hydrocarbons/metabolism , Petroleum/metabolism , Pseudomonas/metabolism , Surface-Active Agents/chemistry , Urea
20.
Adv Sci (Weinh) ; 9(23): e2200057, 2022 08.
Article En | MEDLINE | ID: mdl-35717671

Early embryos undergo extensive epigenetic reprogramming to achieve gamete-to-embryo transition, which involves the loading and removal of histone variant H2A.Z on chromatin. However, how does H2A.Z regulate gene expression and histone modifications during preimplantation development remains unrevealed. Here, by using ultra-low-input native chromatin immunoprecipitation and sequencing, the genome-wide distribution of H2A.Z is delineated in mouse oocytes and early embryos. These landscapes indicate that paternal H2A.Z is removed upon fertilization, followed by unbiased accumulation on parental genomes during zygotic genome activation (ZGA). Remarkably, H2A.Z exhibits hierarchical accumulation as different peak types at promoters: promoters with double H2A.Z peaks are colocalized with H3K4me3 and indicate transcriptional activation; promoters with a single H2A.Z peak are more likely to occupy bivalent marks (H3K4me3+H3K27me3) and indicate development gene suppression; promoters with no H2A.Z accumulation exhibit persisting gene silencing in early embryos. Moreover, H2A.Z depletion changes the enrichment of histone modifications and RNA polymerase II binding at promoters, resulting in abnormal gene expression and developmental arrest during lineage commitment. Furthermore, similar transcription and accumulation patterns between mouse and porcine embryos indicate that a dual role of H2A.Z in regulating the epigenome required for proper gene expression is conserved during mammalian preimplantation development.


Histone Code , Histones , Animals , Chromatin/genetics , Chromatin/metabolism , Embryo, Mammalian/metabolism , Histone Code/genetics , Histones/genetics , Histones/metabolism , Mammals/genetics , Mammals/metabolism , Mice , Protein Processing, Post-Translational
...