Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.157
Filtrar
1.
Opt Lett ; 49(13): 3717-3720, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950250

RESUMEN

In this paper, we proposed a 2 × 2 multiple-input multiple-output (MIMO) dual spiral octagonal prism liquid dielectric resonator antenna (DRA) with snake-shaped defective ground structure (DGS) for space multiplexing of orbital angular momentum (OAM). The DRA element adopts an inner and outer nested dual spiral structure filled with 0.035 g/ml of brine outside and a cylinder filled with distilled water inside. The proposed MIMO antenna can generate resonance at 1.78-3.02 GHz and 4.01-7.73 GHz (S11≤-10 dB). The isolation among ports is below -20 dB at 2.6 GHz and below -40 dB at 5.1 GHz, which can effectively isolate the l = ±1 and l = ±3 modes' OAM waves through the snake-shaped DGS. The proposed MIMO antenna improves spectral efficiency by OAM spatial multiplexing with l = ±1 and l = ±3 modes' OAM, which improves the data transmission efficiency. The proposed MIMO antenna provides a novel, to the best of our knowledge, solution for wireless communications to improve spectral efficiency.

2.
Research (Wash D C) ; 7: 0406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979514

RESUMEN

Organic polymer materials, as the most abundantly produced materials, possess a flammable nature, making them potential hazards to human casualties and property losses. Target polymer design is still hindered due to the lack of a scientific foundation. Herein, we present a robust, generalizable, yet intelligent polymer discovery framework, which synergizes diverse capabilities, including the in situ burning analyzer, virtual reaction generator, and material genomic model, to achieve results that surpass the sum of individual parts. Notably, the high-throughput analyzer created for the first time, grounded in multiple spectroscopic principles, enables in situ capturing of massive combustion intermediates; then, the created realistic apparatus transforming to the virtual reaction generator acquires exponentially more intermediate information; further, the proposed feature engineering tool, which embedded both polymer hierarchical structures and massive intermediate data, develops the generalizable genomic model with excellent universality (adapting over 20 kinds of polymers) and high accuracy (88.8%), succeeding discovering series of novel polymers. This emerging approach addresses the target polymer design for flame-retardant application and underscores a pivotal role in accelerating polymeric materials discovery.

3.
Science ; 385(6704): 68-74, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38963855

RESUMEN

Passive radiant cooling is a potentially sustainable thermal management strategy amid escalating global climate change. However, petrochemical-derived cooling materials often face efficiency challenges owing to the absorption of sunlight. We present an intrinsic photoluminescent biomass aerogel, which has a visible light reflectance exceeding 100%, that yields a large cooling effect. We discovered that DNA and gelatin aggregation into an ordered layered aerogel achieves a solar-weighted reflectance of 104.0% in visible light regions through fluorescence and phosphorescence. The cooling effect can reduce ambient temperatures by 16.0°C under high solar irradiance. In addition, the aerogel, efficiently produced at scale through water-welding, displays high reparability, recyclability, and biodegradability, completing an environmentally conscious life cycle. This biomass photoluminescence material is another tool for designing next-generation sustainable cooling materials.

4.
Mater Horiz ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967543

RESUMEN

Flexible polyurethane foam (FPUF) is a ubiquitous material utilized in furniture cushions, mattresses, and various technical applications. Despite the widespread use, FPUF faces challenges in maintaining long-lasting flame retardancy and aging resistance, particularly in harsh environments, while retaining mechanical robustness. Here, we present a novel approach to address these issues by enhancing FPUF through multiple free-radical-trapping and hydrogen-bonding mechanisms. A hindered amine phosphorus-containing polyol (DTAP) was designed and chemically introduced into FPUF. The distinctive synergy between hindered amine and phosphorus-containing structures enables the formation of multiple hydrogen bonds with urethane, while also effectively capturing free radicals across a broad temperature spectrum. As a result, incorporating only 5.1 wt% of DTAP led to the material successfully passing vertical burning tests and witnessing notable enhancements in tensile strength, elongation at break, and tear strength. Even after enduring accelerated thermal aging for 168 hours, the foam maintained exceptional flame retardancy and mechanical properties. This study offers novel insights into material enhancement, simultaneously achieving outstanding long-lasting flame retardancy, toughness, and anti-aging performance.

5.
Chempluschem ; : e202400341, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975963

RESUMEN

Dynamic covalent chemistry is a promising strategy for developing recyclable thermosets and their carbon fiber reinforced composites, in line with the goal of green and sustainable development. However, a significant challenge lies in balancing the dynamic reversibility and the desired service performances, such as thermal, mechanical properties, and flame retardancy. It has hindered the broader application of dynamic materials beyond the initial proof of concept. This concept provides an overview of the current state of research on phosphorus-containing covalent adaptable networks (CANs), highlighting key designing and regulating principles for tailoring comprehensive properties including flame retardancy, mechanical and thermal properties, as well as dynamic behaviours such as malleability, reprocessability and degradability. Finally, new frontiers and opportunities in developing high-performance sustainable CANs-based thermosets and their carbon fiber composites for structural engineering applications are prospected.

6.
World J Pediatr ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970732

RESUMEN

BACKGROUND: Monogenic lupus is defined as systemic lupus erythematosus (SLE)/SLE-like patients with either dominantly or recessively inherited pathogenic variants in a single gene with high penetrance. However, because the clinical phenotype of monogenic SLE is extensive and overlaps with that of classical SLE, it causes a delay in diagnosis and treatment. Currently, there is a lack of early identification models for clinical practitioners to provide early clues for recognition. Our goal was to create a clinical model for the early identification of pediatric monogenic lupus, thereby facilitating early and precise diagnosis and treatment for patients. METHODS: This retrospective cohort study consisted of 41 cases of monogenic lupus treated at the Department of Pediatrics at Peking Union Medical College Hospital from June 2012 to December 2022. The control group consisted of classical SLE patients recruited at a 1:2 ratio. Patients were randomly divided into a training group and a validation group at a 7:3 ratio. A logistic regression model was established based on the least absolute shrinkage and selection operator to generate the coefficient plot. The predictive ability of the model was evaluated using receiver operator characteristic curves and the area under the curve (AUC) index. RESULTS: A total of 41 cases of monogenic lupus patients and 82 cases of classical SLE patients were included. Among the monogenic lupus cases (with a male-to-female ratio of 1:1.05 and ages of onset ranging from birth to 15 years), a total of 18 gene mutations were identified. The variables included in the coefficient plot were age of onset, recurrent infections, intracranial calcifications, growth and developmental delay, abnormal muscle tone, lymphadenopathy/hepatosplenomegaly, and chilblain-like skin rash. Our model demonstrated satisfactory diagnostic performance through internal validation, with an AUC value of 0.97 (95% confidence interval = 0.92-0.97). CONCLUSIONS: We summarized and analyzed the clinical characteristics of pediatric monogenic lupus and developed a predictive model for early identification by clinicians. Clinicians should exercise high vigilance for monogenic lupus when the score exceeds - 9.032299.

7.
Front Surg ; 11: 1409283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939077

RESUMEN

Background: Cervical spondylotic amyotrophy (CSA) is a special type of cervical spondylosis based on cervical degeneration, which is mainly manifested by weakness and atrophy of upper limb muscles without obvious sensory impairment. Various diagnostic and treatment strategies used; however, discrepancies exist. We tried to discuss diagnosing and treating CSA. Methods: 15 patients with CSA were diagnosed in the Orthopedics Department of the First Affiliated Hospital of Zhengzhou University, aged 42-70 years old. The duration of preoperative symptoms of amyotrophy was 6 to 240 months. 12 patients received surgical treatment, and 3 patients received conservative treatment. The patients were divided into two groups according to the site of preoperative amyotrophy. The manual muscle test was used to evaluate the patients' muscle strength pre-and postoperatively. Results: During postoperative follow-up, the muscle strength of 12 patients improved to different degrees compared to before surgery. The improvement effect was excellent in 2 cases, good in 6, and moderate in 4. There was no decrease in postoperative muscle strength compared with that before surgery. The satisfaction rate of the effect was 66.7%. The two groups had no statistically significant difference in preoperative muscle strength. The postoperative muscle strength of the proximal group was significantly better than that of the distal group. Conclusion: The surgical effect of CSA of the proximal type is significantly better than that of the distal type. The recovery effect of amyotrophy after surgery for distal type CSA is poor; thus, surgical treatment should be carefully considered.

8.
ACS Nano ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941591

RESUMEN

High-performance thermal interface materials (TIMs) are highly desired for high-power electronic devices to accelerate heat dissipation. However, the inherent trade-off conflict between achieving high thermal conductivity and excellent compliance of filler-enhanced TIMs results in the unsatisfactory interfacial heat transfer efficiency of existing TIM solutions. Here, we report the graphene fiber (GF)-based elastic TIM with metal-level thermal conductivity via mechanical-electric dual-field synergistic alignment engineering. Compared with state-of-the-art carbon fiber (CF), GF features both superb high thermal conductivity of ∼1200 W m-1 K-1 and outstanding flexibility. Under dual-field synergistic alignment regulation, GFs are vertically aligned with excellent orientation (0.88) and high array density (33.5 mg cm-2), forming continuous thermally conductive pathways. Even at a low filler content of ∼17 wt %, GF-based TIM demonstrates extraordinarily high through-plane thermal conductivity of up to 82.4 W m-1 K-1, exceeding most CF-based TIMs and even comparable to commonly used soft indium foil. Benefiting from the low stiffness of GF, GF-based TIM shows a lower compressive modulus down to 0.57 MPa, an excellent resilience rate of 95% after compressive cycles, and diminished contact thermal resistance as low as 7.4 K mm2 W-1. Our results provide a superb paradigm for the directed assembly of thermally conductive and flexible GFs to achieve scalable and high-performance TIMs, overcoming the long-standing bottleneck of mechanical-thermal mismatch in TIM design.

9.
Nat Commun ; 15(1): 4999, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866834

RESUMEN

Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.


Asunto(s)
Microscopía por Crioelectrón , Criptófitas , Complejos de Proteína Captadores de Luz , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química , Criptófitas/metabolismo , Fotosíntesis , Modelos Moleculares , Transferencia de Energía , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/química , Clorofila A/metabolismo , Clorofila A/química
10.
Nat Microbiol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862603

RESUMEN

Dimethylsulfoniopropionate (DMSP) is an abundant marine organosulfur compound with roles in stress protection, chemotaxis, nutrient and sulfur cycling and climate regulation. Here we report the discovery of a bifunctional DMSP biosynthesis enzyme, DsyGD, in the transamination pathway of the rhizobacterium Gynuella sunshinyii and some filamentous cyanobacteria not previously known to produce DMSP. DsyGD produces DMSP through its N-terminal DsyG methylthiohydroxybutyrate S-methyltransferase and C-terminal DsyD dimethylsulfoniohydroxybutyrate decarboxylase domains. Phylogenetically distinct DsyG-like proteins, termed DSYE, with methylthiohydroxybutyrate S-methyltransferase activity were found in diverse and environmentally abundant algae, comprising a mix of low, high and previously unknown DMSP producers. Algae containing DSYE, particularly bloom-forming Pelagophyceae species, were globally more abundant DMSP producers than those with previously described DMSP synthesis genes. This work greatly increases the number and diversity of predicted DMSP-producing organisms and highlights the importance of Pelagophyceae and other DSYE-containing algae in global DMSP production and sulfur cycling.

11.
J Biol Chem ; 300(7): 107466, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876302

RESUMEN

Glycosaminoglycan (GAG) lyases are often strictly substrate specific, and it is especially difficult to simultaneously degrade GAGs with different types of glycosidic bonds. Herein, we found a new class of GAG lyases (GAGases) from different bacteria. These GAGases belong to polysaccharide lyase 35 family and share quite low homology with the identified GAG lyases. The most surprising thing is that GAGases can not only degrade three types of GAGs: hyaluronan, chondroitin sulfate, and heparan sulfate but also even one of them can also degrade alginate. Further investigation of structural preferences revealed that GAGases selectively act on GAG domains composed of non/6-O-/N-sulfated hexosamines and d-glucoronic acids as well as on alginate domains composed of d-mannuronic acids. In addition, GAG lyases were once speculated to have evolved from alginate lyases, but no transitional enzymes have been found. The discovery of GAGases not only broadens the category of GAG lyases, provides new enzymatic tools for the structural and functional studies of GAGs with specific structures, but also provides candidates for the evolution of GAG lyases.

12.
ACS Omega ; 9(24): 25996-26003, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38911809

RESUMEN

The flexible robot is widely used in a variety of fields such as medical treatment, rescue and disaster relief, industry, and agriculture. Using elastic materials to prepare flexible robot body structures is the core of the study of flexible robots. Due to the small selection of materials, single preparation method, and long fabrication time, in this study, a new method of gas-assisted extrusion (GAE) of elastic material round-tube for flexible robot body was proposed, and the numerical simulation of GAE was carried out with nonsilicone elastic material round-tube under different viscosities. The results showed that with the change of viscosity, the velocity, pressure drop, and shear rate of melt in all directions change accordingly. When the viscosity is too small or too large, it is easy to bring negative effects on the GAE process of elastic materials. TPE and TPU were completely plasticized in the GAE, and the surface of the extruded elastic products was smooth and straight, with full gloss. Therefore, in the preparation of the flexible robot body, nonsilicone elastic materials and GAE forming methods can be considered.

13.
Adv Sci (Weinh) ; : e2310131, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922788

RESUMEN

N4-acetylcytidine (ac4C) is essential for the development and migration of tumor cells. According to earlier research, N-acetyltransferase 10 (NAT10) can increase messenger RNAs (mRNAs) stability by catalyzing the synthesis of ac4C. However, little is known about NAT10 expression and its role in the acetylation modifications in prostate cancer (PCa). Thus, the biological function of NAT10 in PCa is investigated in this study. Compared to paraneoplastic tissues, the expression of NAT10 is significantly higher in PCa. The NAT10 expression is strongly correlated with the pathological grade, clinical stage, Gleason score, T-stage, and N-stage of PCa. NAT10 has the ability to advance the cell cycle and the epithelial-mesenchymal transition (EMT), both of which raise the malignancy of tumor cells. Mechanistically, NAT10 enhance the stability of high mobility group AT-hook 1 (HMGA1) by acetylating its mRNA, thereby promoting cell cycle progression to improve cell proliferation. In addition, NAT10 improve the stability of Keratin 8 (KRT8) by acetylating its mRNA, which promotes the progression of EMT to improve cell migration. This findings provide a potential prognostic or therapeutic target for PCa.

14.
Mater Horiz ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742392

RESUMEN

Polyurethane (PU) foams, pivotal in modern life, face challenges suh as fire hazards and environmental waste burdens. The current reliance of PU on potentially ecotoxic halogen-/phosphorus-based flame retardants impedes large-scale material recycling. Here, our demonstrated controllable catalytic cracking strategy, using cesium salts, enables self-evolving recycling of flame-retardant PU. The incorporation of cesium citrates facilitates efficient urethane bond cleavage at low temperatures (160 °C), promoting effective recycling, while encouraging pyrolytic rearrangement of isocyanates into char at high temperatures (300 °C) for enhanced PU fire safety. Even in the absence of halogen/phosphorus components, this foam exhibits a substantial increase in ignition time (+258.8%) and a significant reduction in total smoke release (-79%). This flame-retardant foam can be easily recycled into high-quality polyol under mild conditions, 60 °C lower than that for the pure foam. Notably, the trace amounts of cesium gathered in recycled polyols stimulate the regenerated PU to undergo self-evolution, improving both flame-retardancy and mechanical properties. Our controllable catalytic cracking strategy paves the way for the self-evolutionary recycling of high-performance firefighting materials.

15.
Angew Chem Int Ed Engl ; : e202407510, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38774971

RESUMEN

Plastic pollution is an emerging global threat due to lack of effective methods for transforming waste plastics into useful resources. Here, we demonstrate a direct oxidative upcycling of polyethylene into high-value and high-volume saturated dicarboxylic acids in high carbon yield of 85.9 % in which the carbon yield of long chain dicarboxylic (C10-C20) acids can reach 58.9% over cobalt-doped MCM-41 molecular sieves, in the absence of any solvent or precious metal catalyst. The distribution of the dicarboxylic acids can be controllably adjusted from short-chain (C4-C10) to long-chain ones (C10-C20) through changing cobalt loading of MCM-41 under nanoconfinement. Highly and sparsely dispersed cobalt along with confined space of mesoporous structure enables complete degradation of polyethylene and high selectivity of dicarboxylic acid in mild condition. So far, this is the first report on highly selective one-step preparation of long chain dicarboxylic acids. The approach provides an attractive solution to tackle plastic pollution and a promising alternative route to long chain diacids.

16.
Biomacromolecules ; 25(6): 3795-3806, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38781116

RESUMEN

Biodegradable polymers with shape memory effects (SMEs) offer promising solutions for short-term medical interventions, facilitating minimally invasive procedures and subsequent degradation without requiring secondary surgeries. However, achieving a good balance among desirable SMEs, mechanical performance, degradation rate, and bioactivities remains a significant challenge. To address this issue, we established a strategy to develop a versatile biodegradable polyurethane (PPDO-PLC) with tunable hierarchical structures via precise chain segment control. Initial copolymerization of l-lactide and ε-caprolactone sets a tunable Tg close to body temperature, followed by block copolymerization with poly(p-dioxanone) to form a hard domain. This yields a uniform microphase-separation morphology, ensuring robust SME and facilitating the development of roughly porous surface structures in alkaline environments. Cell experiments indicate that these rough surfaces significantly enhance cellular activities, such as adhesion, proliferation, and osteogenic differentiation. Our approach provides a methodology for balancing biodegradability, SMEs, three-dimensional (3D) printability, and bioactivity in materials through hierarchical structure regulation.


Asunto(s)
Poliuretanos , Poliuretanos/química , Poliuretanos/farmacología , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Porosidad , Adhesión Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ratones , Poliésteres/química , Diferenciación Celular/efectos de los fármacos , Lactonas/química , Lactonas/farmacología , Humanos , Caproatos/química , Dioxanos/química , Polímeros
17.
Sci Adv ; 10(22): eadl1123, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38809977

RESUMEN

Immunosenescence contributes to systematic aging and plays a role in the pathogenesis of Alzheimer's disease (AD). Therefore, the objective of this study was to investigate the potential of immune rejuvenation as a therapeutic strategy for AD. To achieve this, the immune systems of aged APP/PS1 mice were rejuvenated through young bone marrow transplantation (BMT). Single-cell RNA sequencing revealed that young BMT restored the expression of aging- and AD-related genes in multiple cell types within blood immune cells. The level of circulating senescence-associated secretory phenotype proteins was decreased following young BMT. Notably, young BMT resulted in a significant reduction in cerebral Aß plaque burden, neuronal degeneration, neuroinflammation, and improvement of behavioral deficits in aged APP/PS1 mice. The ameliorated cerebral amyloidosis was associated with an enhanced Aß clearance of peripheral monocytes. In conclusion, our study provides evidence that immune system rejuvenation represents a promising therapeutic approach for AD.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Rejuvenecimiento , Animales , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/inmunología , Ratones , Ratones Transgénicos , Trasplante de Médula Ósea , Conducta Animal , Péptidos beta-Amiloides/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Placa Amiloide/patología , Placa Amiloide/metabolismo , Envejecimiento/inmunología , Humanos
18.
Small ; : e2401995, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818678

RESUMEN

Upgrading thermosetting polymer waste and harvesting unwanted electromagnetic energy are of great significance in solving environmental pollution and energy shortage problems. Herein, inspired by the glass-blowing art, a spontaneous, controllable, and scalable strategy is proposed to prepare hollow carbon materials by inner blowing and outside blocking. Specifically, hierarchically neuron-like hollow carbon materials (HCMSs) with various sizes are fabricated from melamine-formaldehyde sponge (MS) waste. Benefiting from the synergistic of the hollow "cell body" and the connected "protrusions" networks, HCMSs reveal superior electromagnetic absorption performance with a strong reflection loss of -54.9 dB, electromagnetic-heat conversion ability with a high conversion efficiency of 34.4%, and efficient energy storage performance in supercapacitor. Furthermore, a multifunctional device integrating electromagnetic-heat-electrical energy conversion is designed, and its feasibility is proved by experiments and theoretical calculations. The integrated device reveals an output voltage of 34.5 mV and a maximum output power of 0.89 µW with electromagnetic radiation for 60 s. This work provides a novel solution to recycle polymer waste, electromagnetic energy, and unwanted thermal energy.

19.
Mar Drugs ; 22(5)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786621

RESUMEN

Alginate oligosaccharides (AOS), products of alginate degradation by endotype alginate lyases, possess favorable biological activities and have broad applications. Although many have been reported, alginate lyases with homogeneous AOS products and secretory production by an engineered host are scarce. Herein, the alginate lyase AlyC7 from Vibrio sp. C42 was characterized as a trisaccharide-producing lyase exhibiting high activity and broad substrate specificity. With PelB as the signal peptide and 500 mM glycine as the additive, the extracellular production of AlyC7 in Escherichia coli reached 1122.8 U/mL after 27 h cultivation in Luria-Bertani medium. The yield of trisaccharides from sodium alginate degradation by the produced AlyC7 reached 758.6 mg/g, with a purity of 85.1%. The prepared AOS at 20 µg/mL increased the root length of lettuce, tomato, wheat, and maize by 27.5%, 25.7%, 9.7%, and 11.1%, respectively. This study establishes a robust foundation for the industrial and agricultural applications of AlyC7.


Asunto(s)
Escherichia coli , Polisacárido Liasas , Trisacáridos , Vibrio , Polisacárido Liasas/metabolismo , Trisacáridos/biosíntesis , Vibrio/enzimología , Especificidad por Sustrato , Alginatos , Zea mays , Oligosacáridos
20.
Proc Natl Acad Sci U S A ; 121(20): e2319115121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709931

RESUMEN

The endosomal sorting complexes required for transport (ESCRTs) are responsible for membrane remodeling in many cellular processes, such as multivesicular body biogenesis, viral budding, and cytokinetic abscission. ESCRT-III, the most abundant ESCRT subunit, assembles into flat spirals as the primed state, essential to initiate membrane invagination. However, the three-dimensional architecture of ESCRT-III flat spirals remained vague for decades due to highly curved filaments with a small diameter and a single preferred orientation on the membrane. Here, we unveiled that yeast Snf7, a component of ESCRT-III, forms flat spirals on the lipid monolayers using cryogenic electron microscopy. We developed a geometry-constrained Euler angle-assigned reconstruction strategy and obtained moderate-resolution structures of Snf7 flat spirals with varying curvatures. Our analyses showed that Snf7 subunits recline on the membrane with N-terminal motifs α0 as anchors, adopt an open state with fused α2/3 helices, and bend α2/3 gradually from the outer to inner parts of flat spirals. In all, we provide the orientation and conformations of ESCRT-III flat spirals on the membrane and unveil the underlying assembly mechanism, which will serve as the initial step in understanding how ESCRTs drive membrane abscission.


Asunto(s)
Microscopía por Crioelectrón , Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteínas de Saccharomyces cerevisiae , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...