Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Dig Dis Sci ; 66(2): 442-451, 2021 02.
Article En | MEDLINE | ID: mdl-32236884

BACKGROUND: Phospholipase C delta 1 (PLCD1) has been found to be abnormally expressed in various cancers. However, the potential roles of PLCD1 in esophageal squamous cell carcinoma (ESCC) are still unknown. METHODS: Western blot and qPCR were used to explore PLCD1 expression in various ESCC cells. MTT, colony formation assays, wound-healing assay, and transwell cell invasion assay were used to examine the cell viability in vitro. Western blot, qPCR, and luciferase assays were used to investigate the effects of PLCD1 on Wnt/ß-catenin signaling pathway. The xenograft models in nude mice were established to explore the roles of PLCD1 in vivo. RESULTS: We found that the expression of PLCD1 in ESCC cells was significantly downregulated than that in normal esophageal epithelial cells. In addition, upregulation of PLCD1 decreased the capacity of TE-1 and EC18 cells in proliferation, invasion, and migration. Then, the expression of ß-catenin/p-ß-catenin, C-myc, cyclin D1, MMP9, and MMP7 was investigated. PLCD1 activity was found to be negatively associated with the expression of ß-catenin, C-myc, cyclin D1, MMP9, and MMP7. Finally, the activity of PLCD1 in inhibiting ESCC proliferation in vivo was validated. CONCLUSION: The inhibitory effects of PLCD1 on the proliferation, invasion, and migration of TE-1 and EC18 cells might be associated with inhibition of Wnt/ß-catenin signaling pathway. PLCD1 played a key role in inhibiting ESCC carcinogenesis and progression in patients with ESCC.


Cell Movement/physiology , Cell Proliferation/physiology , Esophageal Squamous Cell Carcinoma/metabolism , Phospholipase C delta/biosynthesis , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Animals , Cell Line, Tumor , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/prevention & control , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness/pathology , Tumor Burden/physiology
2.
Int J Mol Sci ; 17(7)2016 Jul 13.
Article En | MEDLINE | ID: mdl-27420055

Lipoxins (LXs) display unique pro-resolving and anti-inflammatory functions in a variety of inflammatory conditions. The present study was undertaken to investigate the effects of BML-111 (5(S),6(R),7-trihydroxyheptanoic acid methyl ester), the agonist of lipoxin A4 receptor, in a model of Lipopolysaccharides (LPS) and d-Galactosamine (d-GalN) induced acute liver injury, and to explore the mechanisms. Histopathological analyses were carried out to quantify liver injury degree. The activities of myeloperoxidase (MPO) were examined to evaluate the levels of neutrophil infiltration. The activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum were detected to evaluate the functions of the liver. The amounts of tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), and interleukin-1ß (IL-1ß) were measured using enzyme-linked immunosorbent assay (ELISA), and the expression levels of transforming growth factor-ß1(TGF-ß1) and cyclooxygenase-2 (COX-2) were examined using Western blotting. The antioxidant capacity, the activities of inducible nitric oxide synthase (iNOS), the contents of malondialdehyde (MDA) and nitric oxide (NO) were analyzed with the kits via biochemical analysis. We established the model of acute liver injury with lipopolysaccharide and d-Galactosamine (LPS/d-GalN): (1) histopathological results and MPO activities, with the activities of AST and ALT in serum, consistently demonstrated LPS and d-GalN challenge could cause severe liver damage, but BML-111 could prevent pathological changes, inhibit neutrophil infiltration, and improve the hepatic function; (2) LPS/d-GalN increased TNF-α, IL-1ß, COX-2, and IL-10, while decreasing TGF-ß1. However, BML-111 could repress LPS/d-GalN -induced TNF-α, IL-1ß and COX-2, meanwhile increasing the expression levels of TGF-ß1 and IL-10; (3) LPS/d-GalN inhibited the activities of superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (T-AOC), and hydroxyl radical-scavenging ability, simultaneously increasing the levels of MDA and NO, so also the activity of iNOS. Otherwise, BML-111 could reverse all the phenomena. In a word, BML-111 played a protective role in acute liver injury induced by LPS and d-GalN in rats, through improving antioxidant capacity and regulating the balance of inflammatory cytokines.


Chemical and Drug Induced Liver Injury/drug therapy , Galactosamine/toxicity , Heptanoic Acids/pharmacology , Lipopolysaccharides/toxicity , Protective Agents/pharmacology , Acute Disease , Animals , Antioxidants/metabolism , Blotting, Western , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Cytokines/metabolism , Male , Rats , Rats, Sprague-Dawley
3.
Inflammation ; 36(5): 1101-6, 2013 Oct.
Article En | MEDLINE | ID: mdl-23640201

Inflammation plays an important role in the occurrence and development of fibrosis. Lipoxins (LXs) and BML-111 (lipoxin A4 agonist) have been approved for potent anti-inflammatory properties. Previously, we and others had showed LXs and BML-111 could protect acute hepatic injury, inhibit the growth and invasion of hepatic tumor. However, there are few reports dealing with their effects on hepatic fibrosis. To explore whether LXs and the analog could interrupt the process of hepatic fibrosis, the effects of BML-111 on tetrachloride-induced hepatic fibrosis were observed and the possible mechanism were discussed. Sprague-Dawley rats were induced liver fibrosis by carbon tetrachloride (CCl4) for 10 weeks with or without BML-111, and the histopathology and collagen content were employed to quantify hepatic necro-inflammation and fibrosis. Moreover, the expression levels of α-smooth muscle actin (α-SMA), transforming growth factor-ß1 (TGF-ß1), and platelet-derived growth factor (PDGF) were examined via Western blot or ELISA. Rats treated with BML-111 improved hepatic necro-inflammation and inhibited hepatic fibrosis in association with reduction of α-SMA expression and decreased collagen deposition. Furthermore, BML-111 could downregulate the expressions of TGF-ß1 and PDGF significantly. BML-111 played a critical protective role in CCl4-induced hepatic fibrosis through inhibiting the levels of TGF-ß1 and PDGF in rats.


Heptanoic Acids/pharmacology , Liver Cirrhosis/prevention & control , Platelet-Derived Growth Factor/metabolism , Receptors, Lipoxin/agonists , Transforming Growth Factor beta1/metabolism , Actins/biosynthesis , Animals , Carbon Tetrachloride , Collagen/biosynthesis , Down-Regulation/drug effects , Gene Expression , Inflammation/drug therapy , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Cirrhosis/chemically induced , Platelet-Derived Growth Factor/biosynthesis , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/biosynthesis , Transforming Growth Factor beta1/blood
...