Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7092, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154037

RESUMEN

Mammalian TIP60 is a multi-functional enzyme with histone acetylation and histone dimer exchange activities. It plays roles in diverse cellular processes including transcription, DNA repair, cell cycle control, and embryonic development. Here we report the cryo-electron microscopy structures of the human TIP60 complex with the core subcomplex and TRRAP module refined to 3.2-Å resolution. The structures show that EP400 acts as a backbone integrating the motor module, the ARP module, and the TRRAP module. The RUVBL1-RUVBL2 hexamer serves as a rigid core for the assembly of EP400 ATPase and YL1 in the motor module. In the ARP module, an ACTL6A-ACTB heterodimer and an extra ACTL6A make hydrophobic contacts with EP400 HSA helix, buttressed by network interactions among DMAP1, EPC1, and EP400. The ARP module stably associates with the motor module but is flexibly tethered to the TRRAP module, exhibiting a unique feature of human TIP60. The architecture of the nucleosome-bound human TIP60 reveals an unengaged nucleosome that is located between the core subcomplex and the TRRAP module. Our work illustrates the molecular architecture of human TIP60 and provides architectural insights into how this complex is bound by the nucleosome.


Asunto(s)
Microscopía por Crioelectrón , Lisina Acetiltransferasa 5 , Humanos , Lisina Acetiltransferasa 5/metabolismo , Lisina Acetiltransferasa 5/química , Lisina Acetiltransferasa 5/genética , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Nucleosomas/química , ADN Helicasas/metabolismo , ADN Helicasas/química , Modelos Moleculares , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Unión Proteica , Multimerización de Proteína , Proteínas que Contienen Bromodominio , Proteínas Adaptadoras Transductoras de Señales
2.
Cell Discov ; 10(1): 15, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331872

RESUMEN

Histone variant H2A.Z is found at promoters and regulates transcription. The ATP-dependent chromatin remodeler SRCAP complex (SRCAP-C) promotes the replacement of canonical histone H2A-H2B dimer with H2A.Z-H2B dimer. Here, we determined structures of human SRCAP-C bound to H2A-containing nucleosome at near-atomic resolution. The SRCAP subunit integrates a 6-subunit actin-related protein (ARP) module and an ATPase-containing motor module. The ATPase-associated ARP module encircles half of the nucleosome along the DNA and may restrain net DNA translocation, a unique feature of SRCAP-C. The motor module adopts distinct nucleosome binding modes in the apo (nucleotide-free), ADP-bound, and ADP-BeFx-bound states, suggesting that ATPase-driven movement destabilizes H2A-H2B by unwrapping the entry DNA and pulls H2A-H2B out of nucleosome through the ZNHIT1 subunit. Structure-guided chromatin immunoprecipitation sequencing analysis confirmed the requirement of H2A-contacting ZNHIT1 in maintaining H2A.Z occupancy on the genome. Our study provides structural insights into the mechanism of H2A-H2A.Z exchange mediated by SRCAP-C.

3.
Nat Commun ; 13(1): 7644, 2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496390

RESUMEN

BAF and PBAF are mammalian SWI/SNF family chromatin remodeling complexes that possess multiple histone/DNA-binding subunits and create nucleosome-depleted/free regions for transcription activation. Despite previous structural studies and recent advance of SWI/SNF family complexes, it remains incompletely understood how PBAF-nucleosome complex is organized. Here we determined structure of 13-subunit human PBAF in complex with acetylated nucleosome in ADP-BeF3-bound state. Four PBAF-specific subunits work together with nine BAF/PBAF-shared subunits to generate PBAF-specific modular organization, distinct from that of BAF at various regions. PBAF-nucleosome structure reveals six histone-binding domains and four DNA-binding domains/modules, the majority of which directly bind histone/DNA. This multivalent nucleosome-binding pattern, not observed in previous studies, suggests that PBAF may integrate comprehensive chromatin information to target genomic loci for function. Our study reveals molecular organization of subunits and histone/DNA-binding domains/modules in PBAF-nucleosome complex and provides structural insights into PBAF-mediated nucleosome association complimentary to the recently reported PBAF-nucleosome structure.


Asunto(s)
Proteínas Cromosómicas no Histona , Nucleosomas , Animales , Humanos , Nucleosomas/genética , Proteínas Cromosómicas no Histona/metabolismo , Factores de Transcripción/metabolismo , Histonas/genética , Histonas/metabolismo , Ensamble y Desensamble de Cromatina , Mamíferos/genética
4.
Nat Commun ; 12(1): 6135, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675218

RESUMEN

Termination of the RNA polymerase III (Pol III)-mediated transcription requires the conversion of an elongation complex (EC) to a pre-termination complex (PTC) on poly-deoxythymidine (dT)-containing non-template strand, a mechanism distinct from Pol I and Pol II. Here, our in vitro transcription elongation assay showed that 5-7 dT-containing DNA template led to transcription termination of Pol III, but not Pol I or Pol II. We assembled human Pol III PTC on a 7 dT-containing DNA template and determined the structure at 3.6 Å resolution. The structure reveals that poly-dT are trapped in a narrow exit tunnel formed by RPC2. A hydrophobic gate of the exit tunnel separates the bases of two connected deoxythymidines and may prevent translocation of the non-template strand. The fork loop 2 stabilizes both template and non-template strands around the transcription fork, and may further prevent strand translocation. Our study shows that the Pol III-specific exit tunnel and FL2 allow for efficient translocation of non-poly-dT sequence during transcription elongation but trap poly-dT to promote DNA retention of Pol III, revealing molecular mechanism of poly-dT-dependent transcription termination of Pol III.


Asunto(s)
ARN Polimerasa III/química , ARN Polimerasa III/metabolismo , Timidina/metabolismo , Terminación de la Transcripción Genética , Sitios de Unión , Células HEK293 , Humanos , Conformación Proteica en Hélice alfa , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa III/genética , Timidina/química
5.
Science ; 372(6541)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33795473

RESUMEN

Transcription factor IID (TFIID) recognizes core promoters and supports preinitiation complex (PIC) assembly for RNA polymerase II (Pol II)-mediated eukaryotic transcription. We determined the structures of human TFIID-based PIC in three stepwise assembly states and revealed two-track PIC assembly: stepwise promoter deposition to Pol II and extensive modular reorganization on track I (on TATA-TFIID-binding element promoters) versus direct promoter deposition on track II (on TATA-only and TATA-less promoters). The two tracks converge at an ~50-subunit holo PIC in identical conformation, whereby TFIID stabilizes PIC organization and supports loading of cyclin-dependent kinase (CDK)-activating kinase (CAK) onto Pol II and CAK-mediated phosphorylation of the Pol II carboxyl-terminal domain. Unexpectedly, TBP of TFIID similarly bends TATA box and TATA-less promoters in PIC. Our study provides structural visualization of stepwise PIC assembly on highly diversified promoters.


Asunto(s)
Complejos Multiproteicos/química , Regiones Promotoras Genéticas , Factor de Transcripción TFIID/química , Iniciación de la Transcripción Genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Hormona Liberadora de Corticotropina/genética , Microscopía por Crioelectrón , Quinasas Ciclina-Dependientes/química , Células HEK293 , Humanos , Fosforilación , Unión Proteica , Dominios Proteicos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Polimerasa II/química , Porcinos , Urocortinas/genética
6.
Cell Res ; 31(7): 791-800, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33674783

RESUMEN

RNA polymerase III (Pol III) transcribes essential structured small RNAs, such as tRNAs, 5S rRNA and U6 snRNA. The transcriptional activity of Pol III is tightly controlled and its dysregulation is associated with human diseases, such as cancer. Human Pol III has two isoforms with difference only in one of its subunits RPC7 (α and ß). Despite structural studies of yeast Pol III, structure of human Pol III remains unsolved. Here, we determined the structures of 17-subunit human Pol IIIα complex in the backtracked and post-translocation states, respectively. Human Pol III contains a generally conserved catalytic core, similar to that of yeast counterpart, and structurally unique RPC3-RPC6-RPC7 heterotrimer and RPC10. The N-ribbon of TFIIS-like RPC10 docks on the RPC4-RPC5 heterodimer and the C-ribbon inserts into the funnel of Pol III in the backtracked state but is more flexible in the post-translocation state. RPC7 threads through the heterotrimer and bridges the stalk and Pol III core module. The winged helix 1 domain of RPC6 and the N-terminal region of RPC7α stabilize each other and may prevent Maf1-mediated repression of Pol III activity. The C-terminal FeS cluster of RPC6 coordinates a network of interactions that mediate core-heterotrimer contacts and stabilize Pol III. Our structural analysis sheds new light on the molecular mechanism of human Pol IIIα-specific transcriptional regulation and provides explanations for upregulated Pol III activity in RPC7α-dominant cancer cells.


Asunto(s)
ARN Polimerasa III , Saccharomyces cerevisiae , Regulación de la Expresión Génica , Humanos , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética
7.
Nat Commun ; 12(1): 339, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436626

RESUMEN

Tuberous sclerosis complex (TSC) integrates upstream stimuli and regulates cell growth by controlling the activity of mTORC1. TSC complex functions as a GTPase-activating protein (GAP) towards small GTPase Rheb and inhibits Rheb-mediated activation of mTORC1. Mutations in TSC genes cause tuberous sclerosis. In this study, the near-atomic resolution structure of human TSC complex reveals an arch-shaped architecture, with a 2:2:1 stoichiometry of TSC1, TSC2, and TBC1D7. This asymmetric complex consists of two interweaved TSC1 coiled-coil and one TBC1D7 that spans over the tail-to-tail TSC2 dimer. The two TSC2 GAP domains are symmetrically cradled within the core module formed by TSC2 dimerization domain and central coiled-coil of TSC1. Structural and biochemical analyses reveal TSC2 GAP-Rheb complimentary interactions and suggest a catalytic mechanism, by which an asparagine thumb (N1643) stabilizes γ-phosphate of GTP and accelerate GTP hydrolysis of Rheb. Our study reveals mechanisms of TSC complex assembly and GAP activity.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/química , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/química , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Biocatálisis , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Proteína 1 del Complejo de la Esclerosis Tuberosa/ultraestructura , Proteína 2 del Complejo de la Esclerosis Tuberosa/ultraestructura
8.
Science ; 367(6480): 875-881, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32001526

RESUMEN

Mammalian SWI/SNF family chromatin remodelers, BRG1/BRM-associated factor (BAF) and polybromo-associated BAF (PBAF), regulate chromatin structure and transcription, and their mutations are linked to cancers. The 3.7-angstrom-resolution cryo-electron microscopy structure of human BAF bound to the nucleosome reveals that the nucleosome is sandwiched by the base and the adenosine triphosphatase (ATPase) modules, which are bridged by the actin-related protein (ARP) module. The ATPase motor is positioned proximal to nucleosomal DNA and, upon ATP hydrolysis, engages with and pumps DNA along the nucleosome. The C-terminal α helix of SMARCB1, enriched in positively charged residues frequently mutated in cancers, mediates interactions with an acidic patch of the nucleosome. AT-rich interactive domain-containing protein 1A (ARID1A) and the SWI/SNF complex subunit SMARCC serve as a structural core and scaffold in the base module organization, respectively. Our study provides structural insights into subunit organization and nucleosome recognition of human BAF complex.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/química , ADN Helicasas/química , Proteínas Nucleares/química , Nucleosomas/química , Proteína SMARCB1/química , Factores de Transcripción/química , Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Proteínas Cromosómicas no Histona/genética , Microscopía por Crioelectrón , Proteínas de Unión al ADN , Humanos , Hidrólisis , Mutación , Neoplasias/genética , Conformación Proteica en Hélice alfa , Factores de Transcripción/genética
9.
Cell Res ; 29(12): 1027-1034, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31729466

RESUMEN

Nonsense-mediated mRNA decay (NMD) targets premature stop codon (PTC)-containing mRNAs for rapid degradation, and is essential for mammalian embryonic development, brain development and modulation of the stress response. The key event in NMD is the SMG1-mediated phosphorylation of an RNA helicase UPF1 and SMG1 kinase activity is inhibited by SMG8 and SMG9 in an unknown mechanism. Here, we determined the cryo-EM structures of human SMG1 at 3.6 Å resolution and the SMG1-SMG8-SMG9 complex at 3.4 Å resolution, respectively. SMG8 has a C-terminal kinase inhibitory domain (KID), which covers the catalytic pocket and inhibits the kinase activity of SMG1. Structural analyses suggest that GTP hydrolysis of SMG9 would lead to a dramatic conformational change of SMG8-SMG9 and the KID would move away from the inhibitory position to restore SMG1 kinase activity. Thus, our structural and biochemical analyses provide a mechanistic understanding of SMG1-SMG8-SMG9 complex assembly and the regulatory mechanism of SMG1 kinase activity.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido/fisiología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Microscopía por Crioelectrón/métodos , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Modelos Moleculares , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química , ARN Helicasas/metabolismo , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA