Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 618
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39119826

RESUMEN

The authors report a case of primary aldosteronism (PA) with postoperative elevation of aldosterone treated effectively by finerenone. The patient was a hypertensive man with a 30-year history of hypertension and sustained an acute myocardial infarction 5 years ago. Bilateral adrenal nodules with hyperplasia were detected and PA was confirmed. His blood potassium, direct renin concentration, and aldosterone level returned to normal after surgery of right adrenalectomy. However, 1 year after surgery, he experienced a decrease in blood potassium and an increase in aldosterone. A saline infusion test revealed an aldosterone level of 124.47 pg/mL. The patient consented to treatment with finerenone. His aldosterone and potassium levels and blood pressure have been controlled well during follow-up. This case highlights the need to screen for secondary hypertension as early as possible. Finerenone may be effective for patients with PA who are not candidates for surgery and those not relieved after surgery.

2.
Int J Ophthalmol ; 17(8): 1411-1417, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156775

RESUMEN

AIM: To prevent neovascularization in diabetic retinopathy (DR) patients and partially control disease progression. METHODS: Hypoxia-related differentially expressed genes (DEGs) were identified from the GSE60436 and GSE102485 datasets, followed by gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Potential candidate drugs were screened using the CMap database. Subsequently, a protein-protein interaction (PPI) network was constructed to identify hypoxia-related hub genes. A nomogram was generated using the rms R package, and the correlation of hub genes was analyzed using the Hmisc R package. The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve (ROC) curves. Finally, a hypoxia-related miRNA-transcription factor (TF)-Hub gene network was constructed using the NetworkAnalyst online tool. RESULTS: Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified, such as ruxolitinib, meprylcaine, and deferiprone. In addition, 8 hub genes were also identified: glycogen phosphorylase muscle associated (PYGM), glyceraldehyde-3-phosphate dehydrogenase spermatogenic (GAPDHS), enolase 3 (ENO3), aldolase fructose-bisphosphate C (ALDOC), phosphoglucomutase 2 (PGM2), enolase 2 (ENO2), phosphoglycerate mutase 2 (PGAM2), and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). Based on hub gene predictions, the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs, 77 TFs, and hub genes. The results of ROC showed that the except for GAPDHS, the area under curve (AUC) values of the other 7 hub genes were greater than 0.758, indicating their favorable diagnostic performance. CONCLUSION: PYGM, GAPDHS, ENO3, ALDOC, PGM2, ENO2, PGAM2, and PFKFB3 are hub genes in DR, and hypoxia-related hub genes exhibited favorable diagnostic performance.

3.
Colloids Surf B Biointerfaces ; 243: 114145, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39142000

RESUMEN

The hypoxic microenvironment within the tumor microenvironment of breast cancer imposes a challenge in overcoming chemotherapy resistance. In this investigation, we designed a novel strategy utilizing a light-controlled cascade targeting nanomedicine specifically tailored for enhanced immune therapy of breast cancer. Albumin nanoparticle was achieved by crosslinking, followed by loading TPZ and Ce6, and subsequent modification to enable selective binding with CD44 hyaluronic acid to form nanomedicine. Encouragingly, it was demonstrated the remarkable ability of the nanomedicine to effectively internalize into cellular entities, thereby inducing apoptosis in 4T1 cells efficiently in vitro when exposed to light irradiation. In vivo assessments showcased the exceptional aptitude of the nanomedicine not only for preferential accumulation within tumor tissues, but also for substantial suppression of tumor growth. Immune mechanisms have shown that nanomedicine treatment promoted the maturation of DCs in vivo, enhanced the proportion of CD8+ T cells in the spleen and tumor, and simultaneously upregulated the ratio of M1 macrophages favorable for anti-tumor effects. These outcomes collectively advance a fresh perspective for the clinical breast cancer therapy.

4.
J Nanobiotechnology ; 22(1): 511, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39187876

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is a chronic intestinal inflammation, resulting in a global healthcare challenge with no real specific medicine. Natural medicines are recognized as a potential clinical alternative therapy, but their applications are limited by poor solubility and low bioavailability. RESULTS: In this work, inspired by the natural medicines of ancient China, novel functional carbon dots derived from Magnetite and Medicated Leaven (MML-CDs) were synthesized by hydrothermal method, and confirmed their ultrasmall nano-size (3.2 ± 0.6 nm) and Fe doped surface structure, thereby with excellent gastrointestinal stability, remarkable capabilities in eliminating ROS, and highly biocompatibility. With no external stimuli, the oral administration of MML-CDs demonstrated obvious alleviation to UC. Further experiments pointed that MML-CDs could improve hemostasis capability, suppress inflammation reactions and oxidative stress, and up-regulate the expression of tight junction proteins. Furthermore, MML-CDs also showed well regulation in the dysbiosis of intestinal flora. CONCLUSION: Overall, above evidence reveals that green-synthesized MML-CDs can significantly alleviate intestinal bleeding, inhibit colon inflammation, and repair colonic barrier damage, further regulating intestinal flora and intestinal inflammation microenvironment. Our findings provide an efficient oral administration of MML-CDs as a novel therapy strategy for ulcerative colitis.


Asunto(s)
Antioxidantes , Carbono , Colitis Ulcerosa , Colitis Ulcerosa/tratamiento farmacológico , Animales , Carbono/química , Administración Oral , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/uso terapéutico , Ratones , Masculino , Estrés Oxidativo/efectos de los fármacos , Humanos , Puntos Cuánticos/química , Productos Biológicos/química , Productos Biológicos/farmacología , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
5.
Autoimmun Rev ; 23(6): 103578, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004157

RESUMEN

Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.

6.
Contemp Clin Trials Commun ; 40: 101328, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39026569

RESUMEN

Background: Coronary heart disease (CHD) is the most common cardiovascular disease facing human beings. Cardiac remodelling is an important pathological factor for the progression of heart failure (HF) after CHD. At present, Chinese medicine is widely used in the treatment of HF, but there are still some drugs lack of evidence-based and mechanism evidence. Multi-omics techniques can deep explore candidate pathogenic factors and construct gene regulatory networks.This trial is intended to evaluate the effect on Huoxin pill (HXP) in the treatment of HF after programmable communication interface (PCI). Meantime, multi-omics analysis technique will be used to target the fundamental pathological links of cardiac remodelling, so as to study the mechanism of HXP in the treatment of HF after PCI. Methods: This study is a randomized, double-blind, placebo-controlled trial. Sixty patients with HF undergoing PCI are recruited from the First Affiliated Hospital of Henan University of CM. All selected patients will be randomly attributed to receive conventional treatment + HXP or placebo. The packaging, dosage and smell of placebo and heart activating pill were identical. The primary outcome is NYHA cardiac function grade, while the secondary outcomes included Lee's HF score, exercise tolerance test, and quality of life evaluation. Additional indicators include cardiac ultrasound, electrocardiogram, 24-h dynamic electrocardiogram, myocardial injury indicators, and energy metabolism indicators. Discussion: This study may provide a new treatment option for patients with HF after PCI and provide evidence for the treatment of CHD and HF with HXP. Trial registration: 2023-10-08 registered in China Clinical Trial Registry, registration number ChiCTR2300076402.

7.
Inorg Chem ; 63(32): 15105-15114, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39081045

RESUMEN

The efficient and complete extraction of uranium from aqueous solutions is crucial for safeguarding human health from potential radiotoxicity and chemotoxicity. Herein, an ultrathin 2D metal-organic framework (MOF) nanosheet with cavity structures was elaborately constructed, based on a calix[4]arene ligand. The large molecular skeleton and cup-shaped feature of the calix[4]arene enabled the as-prepared MOFs with large layer separations, which can be readily delaminated into ultrathin single-layer (∼1.25 nm) nanosheets. The incorporation of permanent cavity structures to the MOF nanosheets can fully utilize their structural features of readily accessible adsorption groups and exposed surface area in uranium removal, reaching ultrafast adsorption kinetics; the functionalized cavity structure endowed MOF nanosheets with the ability to preconcentrate and extract uranium from aqueous solutions with ultrahigh efficiencies, even at extremely low concentrations. As a result, relatively high removal ratios (>95%) can be achieved for uranium within 5 min, even in the ultralow concentration range of 75-250 ppb, and the residual uranium was reduced to below 4.9 ppb. The MOF nanosheets also exhibited extremely high anti-interference ability, which could efficiently remove the low-level uranium (∼150 ppb) from various real samples. The characterizations and density functional theory calculations demonstrated that the synergistic effects of multiple interactions between the carboxylate groups and cage-like cavities with uranyl ions can be responsible for the efficient and selective uranium extraction.

8.
Huan Jing Ke Xue ; 45(6): 3638-3648, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897783

RESUMEN

To achieve efficient resource utilization of fly ash and multi-source organic waste, a composting experiment was carried out to investigate the effects of fly ash on co-aerobic composting using kitchens, chicken manure, and sawdust (15:5:2). The effects of different application doses (5 % and 10 %, calculated in total wet weight of organic solid waste) of fly ash on physical and chemical properties, nutrient elements, and bacterial community structure during co-composting were evaluated. The results showed that the addition dose of 5 % and 10 % fly ash significantly increased the highest temperature (56.6 ℃ and 56.9 ℃) and extended the thermophilic period to nine days. Compared with that in the control, the total nutrient content of compost products in the treatments of 5 % FA and 10 % FA was increased by 4.09 % and 13.55 %, respectively. The bacterial community structure changed greatly throughout the composting, and the bacterial diversity of all treatments increased obviously. In the initial stage of composting, Proteobacteria was the dominant phylum of bacteria, with a relative abundance ranging from 35.26 % to 39.40 %. In the thermophilic period, Firmicutes dominated; its relative abundance peaked at 52.46 % in the 5 % FA treatment and 67.72 % in the 10 % FA treatment. Bacillus and Thermobifida were the predominant groups in the thermophilic period of composting. The relative abundance of Bacillus and Thermobifida in the 5 % FA and 10 % FA treatments were 33.41 % and 62.89 %(Bacillus) and 33.06 % and 12.23 %(Thermobifida), respectively. The results of the redundancy analysis (RDA) revealed that different physicochemical indicators had varying degrees of influence on bacteria, with organic matter, pH, available phosphorus, and available potassium being the main environmental factors influencing bacterial community structure. In summary, the addition of fly ash promoted the harmlessness and maturation of co- aerobic composting of urban multi-source organic waste, while optimizing microbial community structure and improving the quality and efficiency of composting.


Asunto(s)
Bacterias , Ciudades , Ceniza del Carbón , Compostaje , Compuestos Orgánicos , Eliminación de Residuos , Residuos Sólidos , Compostaje/métodos , Eliminación de Residuos/métodos , Compuestos Orgánicos/análisis , Residuos Sólidos/análisis , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Estiércol , Proteobacteria , Microbiota
9.
Int J Biol Macromol ; 275(Pt 1): 133344, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914391

RESUMEN

The novel multifunctional active packaging composite film with antimicrobial, antioxidant, water-vapor and UV-barrier, and corrosion resistance properties was successfully prepared from waste biomass. In this study, waste poplar sawdust was pretreated using green liquor to extract black liquor (BL). BL was then mixed with polyvinyl alcohol (PVA) solution for synthesizing silver nanoparticles (AgNPs). PVA-BL-AgNPs film was fabricated by solution casting method, and the microstructure characterization and macroscopic performance testing of the composite film were conducted. The results revealed that PVA-BL-AgNPs film exhibited inhibitory effects against Staphylococcus aureus (inhibition zone: 33.6 mm), Pseudomonas aeruginosa (inhibition zone: 31.6 mm), and Escherichia coli (inhibition zone: 32.0 mm). It could eliminate over 99 % of 2,2-diazodi (3-ethyl-benzothiazol-6-sulfonic acid) (ABTS) free radicals and provided 100 % UV-blocking, reducing light-induced food damage. It exhibited the improvement of water-vapor barrier properties and corrosion resistance. In vitro cytotoxicity assays demonstrated that no significant impact occurred on cell proliferation, confirming the safety of the film. Packaging experiments showed that PVA-BL-AgNPs film effectively inhibited milk spoilage and prolonged the shelf-life of bread and bananas. Therefore, PVA-BL-AgNPs film might extend the shelf-life of food and offer significant opportunities in addressing the issues of low safety and environmental pollution associated with traditional packaging films.


Asunto(s)
Antibacterianos , Antioxidantes , Embalaje de Alimentos , Lignina , Nanopartículas del Metal , Plata , Rayos Ultravioleta , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacología , Lignina/química , Corrosión , Embalaje de Alimentos/métodos , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Frutas/química , Alcohol Polivinílico/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
10.
Proc Natl Acad Sci U S A ; 121(25): e2400546121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857407

RESUMEN

Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.

11.
Int J Biol Macromol ; 271(Pt 2): 132453, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772472

RESUMEN

Ultrasonic extraction of Osmanthus fragrans was used for reducing Ag+ to prepare AgNPs, which were further loaded on barley distiller's grains shell biochar. By supplementary of sodium alginate and tannic acid, composite gel beads were prepared. The physical properties of biochar-based AgNPs­sodium alginate-tannic acid composite gel beads (C-Ag/SA/TA) were characterized. SEM, FTIR, and XRD showed that biochar-based AgNPs were compatible with sodium alginate-tannic acid. CAg greatly improved the dissolution, swelling, and expansion of gel beads. Through the analysis by the agar diffusion method, C-Ag/SA/TA gel beads had high antibacterial activity (inhibition zone: 22 mm against Escherichia coli and 20 mm against Staphylococcus aureus). It was observed that C-Ag/SA/TA composite gel beads had high antioxidant capacity and the free radical scavenging rate reached 89.0 %. The dye adsorption performance of gel beads was studied by establishing a kinetic model. The maximum adsorption capacities of C-Ag/SA/TA gel beads for methylene blue and Congo red were 166.57 and 318.06 mg/g, respectively. The removal rate of Cr(VI) reached 96.4 %. These results indicated that the prepared composite gel beads had a high adsorption capacity for dyes and metal ions. Overall, C-Ag/SA/TA composite gel beads were biocompatible and had potential applications in environmental pollution treatment.


Asunto(s)
Alginatos , Antibacterianos , Antioxidantes , Carbón Orgánico , Cromo , Nanopartículas del Metal , Plata , Taninos , Plata/química , Carbón Orgánico/química , Alginatos/química , Taninos/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacología , Adsorción , Cromo/química , Geles/química , Colorantes/química , Cinética , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Contaminantes Químicos del Agua/química , Polifenoles
12.
Technol Cancer Res Treat ; 23: 15330338241248576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38693824

RESUMEN

Background: Acute myeloid leukemia (AML) is a type of blood cancer characterized by excessive growth of immature myeloid cells. Unfortunately, the prognosis of pediatric AML remains unfavorable. It is imperative to further our understanding of the mechanisms underlying leukemogenesis and explore innovative therapeutic approaches to enhance overall disease outcomes for patients with this condition. Methods: Quantitative reverse-transcription PCR was used to quantify the expression levels of microRNA (miR)-133a and miR-135a in 68 samples from 59 pediatric patients with AML. Dual-luciferase reporter transfection assay, Cell Counting Kit-8 assay, and western blot analysis were used to investigate the functions of miR-133a and miR-135a. Results: Our study found that all-trans-retinoic acid (ATRA) promoted the expression of miR-133a and miR-135a in AML cells, inhibited caudal type homeobox 2 (CDX2) expression, and subsequently inhibited the proliferation of AML cells. Additionally, miR-133a and miR-135a were highly expressed in patients with complete remission and those with better survival. Conclusions: miR-133a and miR-135a may play an antioncogenic role in pediatric AML through the ATRA-miRNA133a/135a-CDX2 pathway. They hold promise as potentially favorable prognostic indicators and novel therapeutic targets for pediatric AML.


Asunto(s)
Biomarcadores de Tumor , Leucemia Mieloide Aguda , MicroARNs , Tretinoina , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Biomarcadores de Tumor/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , MicroARNs/genética , Pronóstico , Tretinoina/farmacología , Tretinoina/uso terapéutico
13.
RSC Adv ; 14(23): 16349-16357, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38812824

RESUMEN

Molecular hybridization is a widely employed technique in medicinal chemistry for drug modification, aiming to enhance pharmacological activity and minimize side effects. The combination of an indole ring and imidazole[2,1-b]thiazole has shown promising potential as a group that exhibits potent anti-inflammatory effects. In this study, we designed and synthesized a series of derivatives comprising indole-2-formamide benzimidazole[2,1-b]thiazole to evaluate their impact on LPS-induced production of pro-inflammatory cytokines NO, IL-6, and TNF-α release, as well as iron death in RAW264.7 cells. The findings revealed that most compounds effectively inhibited LPS-induced production of pro-inflammatory cytokines NO, IL-6, and TNF-α release in RAW264.7 cells. Compound 13b exhibited the most potent anti-inflammatory activity among the tested compounds. The results of the cytotoxicity assay indicated that compound 13b was nontoxic. Additionally, compound 13b was found to elevate the levels of ROS, MDA, and Fe2+, while reducing GSH content, thereby facilitating the iron death process. Consequently, compound 13b showed promise for future development as an anti-inflammatory drug.

15.
Front Bioeng Biotechnol ; 12: 1356354, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655387

RESUMEN

Introduction: Circular RNAs (circRNAs) are endogenous noncoding RNAs (ncRNAs) with transcriptional lengths ranging from hundreds to thousands. circRNAs have attracted attention owing to their stable structure and ability to treat complicated diseases. Our objective was to create a one-step reaction for circRNA synthesis using wild-type T7 RNA polymerase as the catalyst. However, T7 RNA polymerase is thermally unstable, and we streamlined circRNA synthesis via consensus and folding free energy calculations for hotspot selection. Because of the thermal instability, the permuted intron and exon (PIE) method for circRNA synthesis is conducted via tandem catalysis with a transcription reaction at a low temperature and linear RNA precursor cyclization at a high temperature. Methods: To streamline the process, a multisite mutant T7 RNA polymerase (S430P, N433T, S633P, F849I, F880Y, and G788A) with significantly improved thermostability was constructed, and G788A was used. Results: The resulting mutant exhibited stable activity at 45°C for over an hour, enabling the implementation of a one-pot transcription and cyclization reaction. The simplified circRNA production process demonstrated an efficiency comparable to that of the conventional two-step reaction, with a cyclization rate exceeding 95% and reduced production of immunostimulatory dsRNA byproducts.

16.
Plant Biotechnol J ; 22(9): 2395-2409, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38593377

RESUMEN

Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Tricotecenos , Triticum , Triticum/microbiología , Triticum/genética , Triticum/metabolismo , Fusarium/patogenicidad , Tricotecenos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Genes Bacterianos/genética
17.
J Agric Food Chem ; 72(18): 10428-10438, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38660720

RESUMEN

Tebuconazole is a chiral triazole fungicide used globally in agriculture as a racemic mixture, but its enantiomers exhibit significant enantioselective dissimilarities in bioactivity and environmental behaviors. The steric hindrance caused by the tert-butyl group makes it a great challenge to synthesize tebuconazole enantiomers. Here, we designed a simple chemoenzymatic approach for the asymmetric synthesis of (R)-tebuconazole, which includes the biocatalytic resolution of racemic epoxy-precursor (2-tert-butyl-2-[2-(4-chlorophenyl)ethyl] oxirane, rac-1a) by Escherichia coli/Rpeh whole cells expressed epoxide hydrolase from Rhodotorula paludigensis (RpEH), followed by a one-step chemocatalytic synthesis of (R)-tebuconazole. It was observed that (S)-1a was preferentially hydrolyzed by E. coli/Rpeh, whereas (R)-1a was retained with a specific activity of 103.8 U/g wet cells and a moderate enantiomeric ratio (E value) of 13.4, which was remarkably improved to 43.8 after optimizing the reaction conditions. Additionally, a gram-scale resolution of 200 mM rac-1a was performed using 150 mg/mL E. coli/Rpeh wet cells, resulting in the retention of (R)-1a in a 97.0% ees, a 42.5% yields, and a 40.5 g/L/d space-time yield. Subsequently, the synthesis of highly optical purity (R)-tebuconazole (>99% ee) was easily achieved through the chemocatalytic ring-opening of the epoxy-precursor (R)-1a with 1,2,4-triazole. To elucidate insight into the enantioselectivity, molecular docking simulations revealed that the unique L-shaped substrate-binding pocket of RpEH plays a crucial role in the enantioselective recognition of bulky 2,2-disubstituted oxirane 1a.


Asunto(s)
Biocatálisis , Epóxido Hidrolasas , Proteínas Fúngicas , Fungicidas Industriales , Rhodotorula , Triazoles , Rhodotorula/enzimología , Rhodotorula/química , Rhodotorula/metabolismo , Triazoles/química , Triazoles/metabolismo , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Fungicidas Industriales/síntesis química , Epóxido Hidrolasas/metabolismo , Epóxido Hidrolasas/química , Estereoisomerismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Simulación del Acoplamiento Molecular , Escherichia coli/enzimología , Escherichia coli/metabolismo
18.
Crit Care Nurse ; 44(2): 13-20, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555967

RESUMEN

INTRODUCTION: Children receiving extracorporeal membrane oxygenation are prone to delirium. This case report describes the nursing care of a child with delirium who received venoarterial extracorporeal membrane oxygenation. Relevant interventions and precautions are also discussed. CLINICAL FINDINGS: A 6-year-old girl was admitted to the pediatric intensive care unit with a 2-day history of vomiting and fever. The child underwent cannulation for venoarterial extracorporeal membrane oxygenation. DIAGNOSIS: The child was diagnosed with acute fulminant myocarditis, cardiac shock, and ventricular arrhythmia. INTERVENTIONS: On the third day of extracorporeal membrane oxygenation, bedside nurses began using the Cornell Assessment of Pediatric Delirium to assess the child for delirium symptoms. The team of physicians and nurses incorporated a nonpharmacologic delirium management bundle into pediatric daily care. Delirium screening, analgesia and sedation management, sleep promotion, and family participation were implemented. OUTCOMES: During the 18 days of pediatric intensive care unit hospitalization, the child had 6 days of delirium: 1.5 days of hypoactive delirium, 1.5 days of hyperactive delirium, and 3 days of mixed delirium. The child was successfully discharged home on hospital day 22. CONCLUSION: Caring for a child with delirium receiving venoarterial extracorporeal membrane oxygenation required multidimensional nursing capabilities to prevent and reduce delirium while ensuring safe extracorporeal membrane oxygenation. This report may assist critical care nurses caring for children under similar circumstances.


Asunto(s)
Delirio , Oxigenación por Membrana Extracorpórea , Niño , Femenino , Humanos , Arritmias Cardíacas , Delirio/diagnóstico , Oxigenación por Membrana Extracorpórea/métodos , Choque Cardiogénico
19.
Bioresour Technol ; 399: 130579, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479628

RESUMEN

An effective deep eutectic solvent (DES) and Iron(III) chloride (FeCl3) combination pretreatment system was developed to improve the removal efficiency of lignin and hemicellulose from corn stover (CS) and enhance its saccharification. N-(2-hydroxyethyl)ethylenediamine (NE) was selected as the hydrogen-bond-donor for preparing ChCl-based DES (ChCl:NE), and a mixture of ChCl:NE (60 wt%) and FeCl3 (0.5 wt%) was utilized for combination pretreatment of CS at 110 ℃ for 50 min. FeCl3/ChCl:NE effectively removed lignin (87.0 %) and xylan (55.9 %) and the enzymatic hydrolysis activity of FeCl3/ChCl:NE-treated CS was 5.5 times that of CS. The reducing sugar yield of pretreated CS was 98.6 %. FeCl3/ChCl:NE significantly disrupted the crystal structure of cellulose in CS and improved the removal of lignin and hemicellulose, enhancing the conversion of cellulose and hemicellulose into monomeric sugars. Overall, this combination of FeCl3 and DES pretreatment methods has high application potential for the biological refining of lignocellulose.


Asunto(s)
Compuestos Férricos , Lignina , Lignina/química , Cloruros , Zea mays/química , Disolventes Eutécticos Profundos , Solventes/química , Biomasa , Celulosa/química , Xilanos , Hidrólisis
20.
Technol Health Care ; 32(4): 2345-2352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38339944

RESUMEN

BACKGROUND: Endometrial receptivity is crucial for the establishment of a healthy pregnancy outcome. Previous research on endometrial receptivity primarily examined endometrial thickness, endometrial echo types, and endometrial blood supply. OBJECTIVE: To explore the differences in the elastic modulus of the endometrium in women with various pregnancy outcomes by real-time shear wave elastography (SWE) and to investigate its application value in evaluation of endometrial receptivity. METHODS: A total of 205 pregnant women who were admitted at Wenzhou People's Hospital between January 2021 and December 2022 were selected. Three-dimensional transvaginal sonography and real-time shear wave elastography were performed in the proliferative phase and receptive phase of the endometrium, and the average elastic modulus of the endometrium in the two phases was obtained and compared. According to whether the pregnancy was successful or not, the participants were divided into the pregnancy group (n= 72) and non-pregnancy group (n= 133), and the differences in intimal thickness, 3D blood flow parameters, and average elastic modulus of intima were compared between the two groups. RESULTS: The average elastic modulus of the endometrium in the proliferative phase and receptive phase was (23.92 ± 2.31) kPa and (11.82 ± 2.24) kPa, respectively, and the difference was statistically significant P< 0.05. The average elastic modulus of the endometrium in the pregnancy group and non-pregnancy group was (9.97 ± 1.08) kPa and (12.82 ± 2.06) kPa, respectively, and the difference was statistically significant P< 0.05. The area under the curve of predicting pregnancy by the average elastic modulus of the endometrium in the receptive phase was 0.888 (0.841∼0.934), with corresponding P value < 0.05. The critical value was 11.15, with a corresponding sensitivity of 81.7% and specificity of 78.2%. CONCLUSION: Real-time shear wave elastography can quantitatively evaluate endometrial elasticity, indirectly reflect the endometrial phase, and provide a new diagnostic concept for evaluating endometrial receptivity and predicting pregnancy outcome in infertile patients.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Endometrio , Resultado del Embarazo , Humanos , Femenino , Diagnóstico por Imagen de Elasticidad/métodos , Endometrio/diagnóstico por imagen , Endometrio/irrigación sanguínea , Endometrio/fisiología , Embarazo , Adulto , Módulo de Elasticidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA