Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.220
Filtrar
1.
J Asian Nat Prod Res ; : 1-16, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975979

RESUMEN

Three chromomycin derivatives, chromomycins A3 (1, CA3), A5 (2, CA5), and monodeacetylchromomycin A3 (3, MDA-CA3), were identified from the soil-derived Streptomyces sp. CGMCC 26516. A reinvestigation of the structure of CA5 is reported, of which the absolute configuration was unambiguously determined for the first time to be identical with that of CA3 based on nuclear magnetic resonance (NMR) data analysis as well as NMR and electronic circular dichroism calculations. Compounds 1-3 showed potent cytotoxicity against the non-small-cell lung cancer (NSCLC) cells (A549, H460, H157-c-FLIP, and H157-LacZ) and down-regulated the protein expression of c-FLIP in A549 cells. The IC50 values of chromomycins in H157-c-FLIP were higher than that in H157-LacZ. Furthermore, si-c-FLIP promoted anti-proliferation effect of chromomycins in NSCLC cells. In nude mice xenograft model, 1 and 2 both showed more potent inhibition on the growth of H157-lacZ xenografts than that of H157-c-FLIP xenografts. These results verify that c-FLIP mediates the anticancer effects of chromomycins in NSCLC.

2.
Adv Mater ; : e2404341, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030759

RESUMEN

Structural topology and symmetry of a two-dimensional (2D) network play pivotal roles in defining its electrical properties and functionalities. Here, a binary buckled honeycomb lattice with C3v symmetry, which naturally hosts topological Dirac fermions and out-of-plane polarity, is proposed. It is successfully achieved in a group IV-V compound, namely monolayer SiP epitaxially grown on Ag(111) surface. Combining first-principles calculations with angle-resolved photoemission spectroscopy, the degeneration of the Dirac nodal lines to points due to the broken horizonal mirror symmetry is elucidated. More interesting, the SiP monolayer manifests metallic nature, which is mutually exclusive with polarity in conventional materials. It is further found that the out-of-plane polarity is strongly suppressed by the metallic substrate. This study not only represents a breakthrough of realizing intrinsic polarity in 2D metallic material via ingenious design but also provides a comprehensive understanding of the intricate interplay of many exotic low-dimensional quantum phenomena.

3.
Methods Mol Biol ; 2823: 225-239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39052223

RESUMEN

Quantitative proteomics approaches based on stable isotopic labeling and mass spectrometry have been widely applied to disease research, drug target discovery, biomarker identification, and systems biology. One of the notable stable isotopic labeling approaches is trypsin-catalyzed 18O/16O labeling, which has its own advantages of low sample consumption, simple labeling procedure, cost-effectiveness, and absence of chemical reactions that potentially generate by-products. In this chapter, a protocol for 18O/16O labeling-based quantitative proteomics approach is described with an application to the identification of proteomic biomarkers of acetaminophen (APAP)-induced hepatotoxicity in rats. The protocol involves first the extraction of proteins from liver tissues of control and APAP-treated rats and digestion into peptides by trypsin. After cleaning of the peptides by solid-phase extraction, equal amounts of peptides from the APAP treatment and the control groups are then subject to trypsin-catalyzed 18O/16O labeling. The labeled peptides are combined and fractionated by off-line strong cation exchange liquid chromatography (SCXLC), and each fraction is then analyzed by nanoflow reversed-phase LC coupled online with tandem mass spectrometry (RPLC-MS/MS) for identification and quantification of differential protein expression between APAP-treated rats and controls. The protocol is applicable to quantitative proteomic analysis for a variety of biological samples.


Asunto(s)
Acetaminofén , Biomarcadores , Enfermedad Hepática Inducida por Sustancias y Drogas , Marcaje Isotópico , Hígado , Proteómica , Espectrometría de Masas en Tándem , Acetaminofén/toxicidad , Acetaminofén/efectos adversos , Marcaje Isotópico/métodos , Proteómica/métodos , Animales , Ratas , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Espectrometría de Masas en Tándem/métodos , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Proteoma/metabolismo , Proteoma/análisis , Tripsina/metabolismo , Isótopos de Oxígeno/metabolismo
4.
Front Immunol ; 15: 1428232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040112

RESUMEN

In the decades since the discovery, Type I interferon (IFN-I) has been intensively studied for their antiviral activity. However, increasing evidences suggest that it may also play an important role in the infection of Toxoplasma gondii, a model organism for intracellular parasites. Recent studies demonstrated that the induction of IFN-I by the parasite depends on cell type, strain genotype, and mouse strain. IFN-I can inhibit the proliferation of T. gondii, but few studies showed that it is beneficial to the growth of the parasite. Meanwhile, T. gondii also can secrete proteins that impact the pathway of IFN-I production and downstream induced interferon-stimulated genes (ISGs) regulation, thereby escaping immune destruction by the host. This article reviews the major findings and progress in the production, function, and regulation of IFN-I during T. gondii infection, to thoroughly understand the innate immune mechanism of T. gondii infection, which provides a new target for subsequent intervention and treatment.


Asunto(s)
Interferón Tipo I , Toxoplasma , Toxoplasmosis , Toxoplasma/inmunología , Animales , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Humanos , Toxoplasmosis/inmunología , Toxoplasmosis/parasitología , Interacciones Huésped-Parásitos/inmunología , Inmunidad Innata , Transducción de Señal , Regulación de la Expresión Génica , Ratones
5.
Artículo en Inglés | MEDLINE | ID: mdl-39042857

RESUMEN

Regenerating periodontal defects in osteoporosis patients presents a significant clinical challenge. Unlike the relatively straightforward regeneration of homogeneous bone tissue, periodontal regeneration requires the intricate reconstruction of the cementum-periodontal ligament-alveolar bone interface. Strontium (Sr)-doped biomaterials have been extensively utilized in bone tissue engineering due to their remarkable pro-osteogenic attributes. However, their application in periodontal tissue regeneration has been scarcely explored. In this study, we synthesized an innovative injectable Sr-BGN/GNM scaffold by integrating Sr-doped bioactive glass nanospheres (Sr-BGNs) into the nanofiber architecture of gelatin nanofiber microspheres (GNMs). This design, mimicking the natural bone extracellular matrix (ECM), enhanced the scaffold's mechanical properties and effectively controlled the sustained release of Sr ions (Sr2+), thereby promoting the proliferation, osteogenic differentiation, and ECM secretion of PDLSCs and BMSCs, as well as enhancing vascularization in endothelial cells. In vivo experiments further indicated that the Sr-BGNs/GNMs significantly promoted osteogenesis and angiogenesis. Moreover, the scaffold's tunable degradation kinetics optimized the prolonged release and pro-regenerative effects of Sr2+ in vivo, matching the pace of periodontal regeneration and thereby facilitating the regeneration of functional periodontal tissues under osteoporotic conditions. Therefore, Sr-BGNs/GNMs emerge as a promising candidate for advancing periodontal regeneration strategies.

6.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3409-3413, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041112

RESUMEN

This article outlined the composition and species characteristics of Chinese materia medica(CMM) resources identified in the fourth national survey of CMM resources. The survey was conducted based on field investigations and office collation, adhering to the "four principles", which emphasized the existence of survey records, voucher specimens, actual photographs, and evidence of medicinal use, so as to summarize the species of CMM resources and ensure the scientific integrity and accuracy of the results. According to the results, China had a total of 18 817 CMM resources, including 15 321 medicinal plants, 826 medicinal fungi, 2 517 medicinal animals, and 153 medicinal minerals. Additionally, the fourth national survey of CMM resources also conducted specialized investigations on 3 151 species of unique medicinal plants, 464 species of rare and endangered medicinal plants, and 196 new species in China. These latest statistics on these CMM resources will provide the most up-to-date foundational data for the protection, management, development, and utilization of these resources over an extended period, offering scientific guidance for the development of the traditional Chinese medicine(TCM) industry.


Asunto(s)
Materia Medica , Plantas Medicinales , China , Plantas Medicinales/química , Plantas Medicinales/clasificación , Plantas Medicinales/crecimiento & desarrollo , Medicina Tradicional China , Medicamentos Herbarios Chinos , Animales , Conservación de los Recursos Naturales
7.
Anim Reprod ; 21(2): e20240011, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021502

RESUMEN

Histone deacetylase 9 (HDAC9) is a histone deacetylase (HDAC) subtype IIa protein that deacetylates histone 3 (H3), histone 4 (H4), and nonhistone proteins in vivo to alter chromosomal shape and regulate gene transcription. There have been few studies on the regulatory influence of the HDAC9 gene on the differentiation of chicken embryonic stem cells (cESCs) into male germ cells, and the significance of HDAC9 is still unknown. Therefore, we explored the specific role of HDAC9 during differentiation of the cESCs of Jilin Luhua chickens through inhibition or overexpression. In medium supplemented with 10-5 mol/L retinoic acid (RA), cESCs were stimulated to develop into germ cells. HDAC9 and germline marker gene mRNA and protein levels were measured using qRT‒PCR and western blotting. During the differentiation of cESCs into male germ cells, overexpression of the HDAC9 gene greatly increased the mRNA and protein expression levels of the germline marker genes Stra8, Dazl, c-kit, and integrin ɑ6. The HDAC9 inhibitor TMP195 significantly decreased the mRNA and protein expression levels of the above markers. In summary, HDAC9 positively regulates the differentiation of cESCs.

8.
Ren Fail ; 46(2): 2375741, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38994782

RESUMEN

BACKGROUND: The successful treatment and improvement of acute kidney injury (AKI) depend on early-stage diagnosis. However, no study has differentiated between the three stages of AKI and non-AKI patients following heart surgery. This study will fill this gap in the literature and help to improve kidney disease management in the future. METHODS: In this study, we applied Raman spectroscopy (RS) to uncover unique urine biomarkers distinguishing heart surgery patients with and without AKI. Given the amplified risk of renal complications post-cardiac surgery, this approach is of paramount importance. Further, we employed the partial least squares-support vector machine (PLS-SVM) model to distinguish between all three stages of AKI and non-AKI patients. RESULTS: We noted significant metabolic disparities among the groups. Each AKI stage presented a distinct metabolic profile: stage 1 had elevated uric acid and reduced creatinine levels; stage 2 demonstrated increased tryptophan and nitrogenous compounds with diminished uric acid; stage 3 displayed the highest neopterin and the lowest creatinine levels. We utilized the PLS-SVM model for discriminant analysis, achieving over 90% identification rate in distinguishing AKI patients, encompassing all stages, from non-AKI subjects. CONCLUSIONS: This study characterizes the incidence and risk factors for AKI after cardiac surgery. The unique spectral information garnered from this study can also pave the way for developing an in vivo RS method to detect and monitor AKI effectively.


Asunto(s)
Lesión Renal Aguda , Biomarcadores , Procedimientos Quirúrgicos Cardíacos , Espectrometría Raman , Urinálisis , Humanos , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/orina , Lesión Renal Aguda/etiología , Espectrometría Raman/métodos , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Biomarcadores/orina , Urinálisis/métodos , Creatinina/orina , Máquina de Vectores de Soporte , Ácido Úrico/orina , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/orina , Complicaciones Posoperatorias/etiología , Factores de Riesgo , Análisis de los Mínimos Cuadrados
9.
Nat Commun ; 15(1): 5917, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004618

RESUMEN

In contemporary manufacturing, the processing of structural materials plays a pivotal role in enabling the creation of robust, tailor-made, and precise components suitable for diverse industrial applications. Nonetheless, current material forming technologies face challenges due to internal stress and defects, resulting in a substantial decline in both mechanical properties and processing precision. We herein develop a processing strategy toward graphene superstructure with a curvature gradient, which allows us to fabricate robust structural materials with meticulously designed functional shapes. The structure consists of an arc-shaped assembly of graphene nanosheets positioned at co-axial curvature centers. During the dehydration-based evaporate-casting process, the assembly is tightened via capillary effect, inducing local bending. By precisely tuning the axis-center distance and tilt angle, we achieve accurate control over the shape of obtained structure. Notably, internal stress is harnessed to reinforce a designed mortise and tenon structure, resulting in a high joining strength of up to ~200 MPa. This innovative approach addresses the challenges faced by current material forming technologies and opens up more possibilities for the manufacturing of robust and precisely shaped components.

10.
Neural Netw ; 179: 106524, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39029299

RESUMEN

Human pose estimation typically encompasses three categories: heatmap-, regression-, and integral-based methods. While integral-based methods possess advantages such as end-to-end learning, full-convolution learning, and being free from quantization errors, they have garnered comparatively less attention due to inferior performance. In this paper, we revisit integral-based approaches for human pose estimation and propose a novel implicit heatmap learning framework. The framework learns the true distribution of keypoints from the perspective of maximum likelihood estimation, aiming to mitigate inherent ambiguity in shape and variance associated with implicit heatmaps. Specifically, Simple Implicit Heatmap Normalization (SIHN) is first introduced to calculate implicit heatmaps as an efficient and effective representation for keypoint localization, which replaces the vanilla softmax normalization method. As implicit heatmaps may introduce potential challenges related to variance and shape ambiguity arising from the inherent nature of implicit heatmaps, we thus propose a Differentiable Spatial-to-Distributive Transform (DSDT) method to aptly map those implicit heatmaps onto the transformation coefficients of a deformed distribution. The deformed distribution is predicted by a likelihood-based generative model to unravel the shape ambiguity quandary effectively, and the transformation coefficients are learned by a regression model to resolve the variance ambiguity issue. Additionally, to expedite the acquisition of precise shape representations throughout the training process, we introduce a Wasserstein Distance-based Constraint (WDC) to ensure stable and reasonable supervision during the initial generation of implicit heatmaps. Experimental results on both the MSCOCO and MPII datasets demonstrate the effectiveness of our proposed method, achieving competitive performance against heatmap-based approaches while maintaining the advantages of integral-based approaches. Our source codes and pre-trained models are available at https://github.com/ducongju/IHL.

12.
J Gynecol Oncol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39028151

RESUMEN

OBJECTIVE: In this study, we evaluated the role of prolonged progestin treatment on atypical endometrial hyperplasia (AEH) patients who did not achieve complete regression (CR) after at least 3 months of progestin treatment. Possible prognostic factors predicting disease regression and recurrence were also assessed. METHODS: We retrospectively identified patients who had histologically confirmed persistent disease after at least 3 months of progestin treatment at two tertiary centers in Korea and Taiwan. Clinicopathologic factors and clinical outcomes were obtained from medical records. Logistic regression was used to analyze the relationship between covariates and the probability of CR and relapse. RESULTS: Fifty-two patients were included. Thirty-seven of 52 patients (71.2%) achieved CR after prolonged progestin treatment. Median time from starting progestin treatment to CR was 12.0 months. Daily administration of medroxyprogesterone acetate ≥200 mg or megestrol acetate ≥80 mg was associated with higher probability of regression. Nineteen of 37 patients (51.4%) experienced recurrence, with median time from CR to relapse of 15.0 months. Body mass index ≥27 was associated with higher relapse probability. Twelve of 16 patients with disease progression to endometrial carcinoma underwent surgery. The 12 cases had stage I tumors and lived without disease. CONCLUSION: Extension of progestin treatment course is feasible for AEH patients without an initial response to progestin. Higher daily progestin dosage was associated with higher probability of CR, and obesity was associated with higher risk of relapse. The patients without an initial response to progestins and whose AEH progressed to endometrial carcinoma had good prognoses.

14.
Sci Adv ; 10(27): eadn2846, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959310

RESUMEN

High-precision light manipulation is crucial for delivering information through complex media. However, existing spatial light modulation devices face a fundamental speed-fidelity tradeoff. Digital micromirror devices have emerged as a promising candidate for high-speed wavefront shaping but at the cost of compromised fidelity due to the limited control degrees of freedom. Here, we leverage the sparse-to-random transformation through complex media to overcome the dimensionality limitation of spatial light modulation devices. We demonstrate that pattern compression by sparsity-constrained wavefront optimization allows sparse and robust wavefront representations in complex media, improving the projection fidelity without sacrificing frame rate, hardware complexity, or optimization time. Our method is generalizable to different pattern types and complex media, supporting consistent performance with up to 89% and 126% improvements in projection accuracy and speckle suppression, respectively. The proposed optimization framework could enable high-fidelity high-speed wavefront shaping through different scattering media and platforms without changes to the existing holographic setups, facilitating a wide range of physics and real-world applications.

15.
Ann Surg ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946545

RESUMEN

OBJECTIVE: To assess the association between the Global Budget Revenue (GBR) payment model and shifts to the outpatient setting for surgical procedures among Medicare fee-for-service beneficiaries in Maryland versus control states. SUMMARY BACKGROUND DATA: The GBR model provides fixed global payments to hospitals to reduce spending growth and incentivize hospitals to reduce the costs of care while improving care quality. Since surgical care is a major contributor to hospital spending, the GBR model might accelerate the ongoing shift from the inpatient to the outpatient setting to generate additional savings. METHODS: A difference-in-differences (DiD) design was used to compare changes in surgical care settings over time from pre-GBR (2011-2013) to post-GBR (2014-2018) for Maryland versus control states for common surgeries that could be performed in the outpatient setting. A cross-sectional approach was used to compare the difference in care settings in 2018 for total knee arthroplasty which was on Medicare's Inpatient-Only List before then. RESULTS: We studied 47,542 surgical procedures from 44,410 beneficiaries in Maryland and control states. GBR's 2014 implementation was associated with an acceleration in the shift from inpatient to outpatient settings for surgical procedures in Maryland (DiD: 3.9 percentage points, 95% CI: 2.3, 5.4). Among patients undergoing total knee arthroplasty in 2018, the proportion of outpatient surgeries in Maryland was substantially higher than that in control states (difference: 27.6 percentage points, 95% CI: 25.6, 29.6). CONCLUSIONS: Implementing Maryland's GBR payment model was associated with an acceleration in the shift from inpatient to outpatient hospital settings for surgical procedures.

16.
Nat Commun ; 15(1): 5502, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951519

RESUMEN

Resistance to chemotherapy has been a major hurdle that limits therapeutic benefits for many types of cancer. Here we systematically identify genetic drivers underlying chemoresistance by performing 30 genome-scale CRISPR knockout screens for seven chemotherapeutic agents in multiple cancer cells. Chemoresistance genes vary between conditions primarily due to distinct genetic background and mechanism of action of drugs, manifesting heterogeneous and multiplexed routes towards chemoresistance. By focusing on oxaliplatin and irinotecan resistance in colorectal cancer, we unravel that evolutionarily distinct chemoresistance can share consensus vulnerabilities identified by 26 second-round CRISPR screens with druggable gene library. We further pinpoint PLK4 as a therapeutic target to overcome oxaliplatin resistance in various models via genetic ablation or pharmacological inhibition, highlighting a single-agent strategy to antagonize evolutionarily distinct chemoresistance. Our study not only provides resources and insights into the molecular basis of chemoresistance, but also proposes potential biomarkers and therapeutic strategies against such resistance.


Asunto(s)
Antineoplásicos , Sistemas CRISPR-Cas , Resistencia a Antineoplásicos , Irinotecán , Oxaliplatino , Proteínas Serina-Treonina Quinasas , Resistencia a Antineoplásicos/genética , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Oxaliplatino/farmacología , Irinotecán/farmacología , Sistemas CRISPR-Cas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Animales , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
17.
Talanta ; 278: 126516, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38972276

RESUMEN

The residues of organophosphorus pesticides (OPs) are increasing environmental pollution and public health concerns. Thus, the development of simple, convenient and sensitive method for detection of OPs is crucial. Herein, a multifunctional Fe-based MOF with fluorescence, catalytic and adsorption, is synthesized by a simple one-pot hydrothermal method. The ratiometric fluorescence sensor for detection of OPs is constructed by using only one multifunctional sensing material. The NH2-MIL-101(Fe) is able catalyze the o-phenylenediamine (OPD) into 2,3-diaminophenazine (DAP) in the presence of H2O2. The generated DAP can significantly quench the intrinsic fluorescence of NH2-MIL-101(Fe) by the fluorescence resonance energy transfer (FRET) and internal filtration effect (IFE), while producing a new measurable fluorescence. Without immobilization or molecular imprinting, pyrophosphate ion (PPi) can inhibit the peroxidase-like activity of the NH2-MIL-101(Fe) by chelating with Fe3+/Fe2+ redox couple. Moreover, PPi can also be hydrolyzed by alkaline phosphatase (ALP), the presence of OPs inhibits the activity of ALP, resulting in the increase of extra PPi preservation and signal changes of ratiometric fluorescence, the interactions of ALP with different OPs are explored by molecular docking, the OPs (e.g., glyphosate) interact with crucial amino acid residues (Asp, Ser, Ala, Lys and Arg) are indicated. The proposed sensor exhibits excellent detection performance for OPs with the detection limit of 18.7 nM, which provides a promising strategy for detection of OPs.

18.
FASEB J ; 38(13): e23766, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38967214

RESUMEN

Dysbiosis of gut microbiota may account for pathobiology in simple fatty liver (SFL), metabolic dysfunction-associated steatohepatitis (MASH), fibrotic progression, and transformation to MASH-associated hepatocellular carcinoma (MASH-HCC). The aim of the present study is to investigate gut dysbiosis in this progression. Fecal microbial rRNA-16S sequencing, absolute quantification, histopathologic, and biochemical tests were performed in mice fed high fat/calorie diet plus high fructose and glucose in drinking water (HFCD-HF/G) or control diet (CD) for 2, 16 weeks, or 14 months. Histopathologic examination verified an early stage of SFL, MASH, fibrotic, or MASH-HCC progression with disturbance of lipid metabolism, liver injury, and impaired gut mucosal barrier as indicated by loss of occludin in ileum mucosa. Gut dysbiosis occurred as early as 2 weeks with reduced α diversity, expansion of Kineothrix, Lactococcus, Akkermansia; and shrinkage in Bifidobacterium, Lactobacillus, etc., at a genus level. Dysbiosis was found as early as MAHS initiation, and was much more profound through the MASH-fibrotic and oncogenic progression. Moreover, the expansion of specific species, such as Lactobacillus johnsonii and Kineothrix alysoides, was confirmed by an optimized method for absolute quantification. Dynamic alterations of gut microbiota were characterized in three stages of early SFL, MASH, and its HCC transformation. The findings suggest that the extent of dysbiosis was accompanied with MASH progression and its transformation to HCC, and the shrinking or emerging of specific microbial species may account at least in part for pathologic, metabolic, and immunologic alterations in fibrogenic progression and malignant transition in the liver.


Asunto(s)
Carcinoma Hepatocelular , Disbiosis , Microbioma Gastrointestinal , Neoplasias Hepáticas , Ratones Endogámicos C57BL , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/microbiología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/microbiología , Neoplasias Hepáticas/etiología , Disbiosis/microbiología , Masculino , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/microbiología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología
19.
Int J Biol Sci ; 20(9): 3621-3637, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993573

RESUMEN

Ferroptosis, an emerging type of programmed cell death, is initiated by iron-dependent and excessive ROS-mediated lipid peroxidation, which eventually leads to plasma membrane rupture and cell death. Many canonical signalling pathways and biological processes are involved in ferroptosis. Furthermore, cancer cells are more susceptible to ferroptosis due to the high load of ROS and unique metabolic characteristics, including iron requirements. Recent investigations have revealed that ferroptosis plays a crucial role in the progression of tumours, especially HCC. Specifically, the induction of ferroptosis can not only inhibit the growth of hepatoma cells, thereby reversing tumorigenesis, but also improves the efficacy of immunotherapy and enhances the antitumour immune response. Therefore, triggering ferroptosis has become a new therapeutic strategy for cancer therapy. In this review, we summarize the characteristics of ferroptosis based on its underlying mechanism and role in HCC and provide possible therapeutic applications.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Especies Reactivas de Oxígeno/metabolismo , Animales , Peroxidación de Lípido , Transducción de Señal , Hierro/metabolismo
20.
World J Gastrointest Oncol ; 16(6): 2742-2756, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38994144

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common malignant liver disease in the world. Platelets (PLTs) are known to play a key role in the maintenance of liver homeostasis and the pathophysiological processes of a variety of liver diseases. Aspirin is the most classic antiplatelet agent. However, the molecular mechanism of platelet action and whether aspirin can affect HCC progression by inhibiting platelet activity need further study. AIM: To explore the impact of the antiplatelet effect of aspirin on the development of HCC. METHODS: Platelet-rich plasma, platelet plasma, pure platelet, and platelet lysate were prepared, and a coculture model of PLTs and HCC cells was established. CCK-8 analysis, apoptosis analysis, Transwell analysis, and real-time polymerase chain reaction (RT-PCR) were used to analyze the effects of PLTs on the growth, metastasis, and inflammatory microenvironment of HCC. RT-PCR and Western blot were used to detect the effects of platelet activation on tumor-related signaling pathways. Aspirin was used to block the activation and aggregation of PLTs both in vitro and in vivo, and the effect of PLTs on the progression of HCC was detected. RESULTS: PLTs significantly promoted the growth, invasion, epithelial-mesenchymal transition, and formation of an inflammatory microenvironment in HCC cells. Activated PLTs promoted HCC progression by activating the mitogen-activated protein kinase/protein kinase B/signal transducer and activator of transcription three (MAPK/ AKT/STAT3) signaling axis. Additionally, aspirin inhibited HCC progression in vitro and in vivo by inhibiting platelet activation. CONCLUSION: PLTs play an important role in the pathogenesis of HCC, and aspirin can affect HCC progression by inhibiting platelet activity. These results suggest that antiplatelet therapy has promising application prospects in the treatment and combined treatment of HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA