Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Nano Lett ; 24(7): 2142-2148, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38323571

Spins confined to point defects in atomically thin semiconductors constitute well-defined atomic-scale quantum systems that are being explored as single-photon emitters and spin qubits. Here, we investigate the in-gap electronic structure of individual sulfur vacancies in molybdenum disulfide (MoS2) monolayers using resonant tunneling scanning probe spectroscopy in the Coulomb blockade regime. Spectroscopic mapping of defect wave functions reveals an interplay of local symmetry breaking by a charge-state-dependent Jahn-Teller lattice distortion that, when combined with strong (≃100 meV) spin-orbit coupling, leads to a locking of an unpaired spin-1/2 magnetic moment to the lattice at low temperature, susceptible to lattice strain. Our results provide new insights into the spin and electronic structure of vacancy-induced in-gap states toward their application as electrically and optically addressable quantum systems.

2.
ACS Appl Mater Interfaces ; 12(40): 45235-45242, 2020 Oct 07.
Article En | MEDLINE | ID: mdl-32924427

Two-dimensional (2D) Ruddlesden-Popper perovskites have been demonstrated to possess great potential for optical and optoelectronic devices. Because they exhibit better ambient stability than three-dimensional (3D) perovskites, they have been considered as potential substitutes for 3D perovskites as light absorbing layers to improve the photoresponsivity of monolayer transition metal dichalcogenide (TMDC)-based photodetectors. Investigation of the optoelectronic properties of TMDC monolayer/2D perovskite vertical heterostructures is however at an early stage. Here, we address the photovoltaic effect and the photodetection performance in tungsten disulfide (WS2) monolayer/2D perovskite (C6H5C2H4NH3)2PbI4 (PEPI) vertical heterostructures. A vertical device geometry with separate graphene contacts to both heterointerface constituents acted as a photovoltaic device and self-driven photodetector. The photovoltaic device exhibited an open circuit voltage of -0.57 V and a short circuit current of 41.6 nA. A photoresponsivity of 0.13 mA/W at the WS2/PEPI heterointerface was achieved, which was signified by a factor of 5 compared to that from the individual WS2 region. The current on/off ratio of the self-driven photodetector was approximately 1500. The photoresponsivity and external quantum efficiency of the self-driven photodetector were estimated to be 24.2 µA/W and 5.7 × 10-5, respectively. This work corroborates that 2D perovskites are promising light absorbing layers in optoelectronic devices with a TMDC-based heterointerface.

...