Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1397316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912211

RESUMEN

While the world struggles to recover from the devastation wrought by the widespread spread of COVID-19, monkeypox virus has emerged as a new global pandemic threat. In this paper, a high precision and lightweight classification network MpoxNet based on ConvNext is proposed to meet the need of fast and safe detection of monkeypox classification. In this method, a two-branch depth-separable convolution residual Squeeze and Excitation module is designed. This design aims to extract more feature information with two branches, and greatly reduces the number of parameters in the model by using depth-separable convolution. In addition, our method introduces a convolutional attention module to enhance the extraction of key features within the receptive field. The experimental results show that MpoxNet has achieved remarkable results in monkeypox disease classification, the accuracy rate is 95.28%, the precision rate is 96.40%, the recall rate is 93.00%, and the F1-Score is 95.80%. This is significantly better than the current mainstream classification model. It is worth noting that the FLOPS and the number of parameters of MpoxNet are only 30.68% and 31.87% of those of ConvNext-Tiny, indicating that the model has a small computational burden and model complexity while efficient performance.


Asunto(s)
Mpox , Redes Neurales de la Computación , Mpox/virología , Humanos , COVID-19 , Algoritmos , SARS-CoV-2/clasificación , Monkeypox virus/clasificación , Aprendizaje Profundo
2.
Front Physiol ; 14: 1200656, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546532

RESUMEN

EEG-based emotion recognition through artificial intelligence is one of the major areas of biomedical and machine learning, which plays a key role in understanding brain activity and developing decision-making systems. However, the traditional EEG-based emotion recognition is a single feature input mode, which cannot obtain multiple feature information, and cannot meet the requirements of intelligent and high real-time brain computer interface. And because the EEG signal is nonlinear, the traditional methods of time domain or frequency domain are not suitable. In this paper, a CNN-DSC-Bi-LSTM-Attention (CDBA) model based on EEG signals for automatic emotion recognition is presented, which contains three feature-extracted channels. The normalized EEG signals are used as an input, the feature of which is extracted by multi-branching and then concatenated, and each channel feature weight is assigned through the attention mechanism layer. Finally, Softmax was used to classify EEG signals. To evaluate the performance of the proposed CDBA model, experiments were performed on SEED and DREAMER datasets, separately. The validation experimental results show that the proposed CDBA model is effective in classifying EEG emotions. For triple-category (positive, neutral and negative) and four-category (happiness, sadness, fear and neutrality), the classification accuracies were respectively 99.44% and 99.99% on SEED datasets. For five classification (Valence 1-Valence 5) on DREAMER datasets, the accuracy is 84.49%. To further verify and evaluate the model accuracy and credibility, the multi-classification experiments based on ten-fold cross-validation were conducted, the elevation indexes of which are all higher than other models. The results show that the multi-branch feature fusion deep learning model based on attention mechanism has strong fitting and generalization ability and can solve nonlinear modeling problems, so it is an effective emotion recognition method. Therefore, it is helpful to the diagnosis and treatment of nervous system diseases, and it is expected to be applied to emotion-based brain computer interface systems.

3.
Brain Sci ; 12(12)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36552132

RESUMEN

Epilepsy is the second most common disease of the nervous system. Because of its high disability rate and the long course of the disease, it is a worldwide medical problem and social public health problem. Therefore, the timely detection and treatment of epilepsy are very important. Currently, medical professionals use their own diagnostic experience to identify seizures by visual inspection of the electroencephalogram (EEG). Not only does it require a lot of time and effort, but the process is also very cumbersome. Machine learning-based methods have recently been proposed for epilepsy detection, which can help clinicians make rapid and correct diagnoses. However, these methods often require extracting the features of EEG signals before using the data. In addition, the selection of features often requires domain knowledge, and feature types also have a significant impact on the performance of the classifier. In this paper, a one-dimensional depthwise separable convolutional neural network and long short-term memory networks (1D DSCNN-LSTMs) model is proposed to identify epileptic seizures by autonomously extracting the features of raw EEG. On the UCI dataset, the performance of the proposed 1D DSCNN-LSTMs model is verified by cross-validation and time complexity comparison. Compared with other previous models, the experimental results show that the highest recognition rates of binary and quintuple classification are 99.57% and 81.30%, respectively. It can be concluded that the 1D DSCNN-LSTMs model proposed in this paper is an effective method to identify seizures based on EEG signals.

4.
Front Plant Sci ; 13: 1108437, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36743544

RESUMEN

Surface Defect Detection (SDD) is a significant research content in Industry 4.0 field. In the real complex industrial environment, SDD is often faced with many challenges, such as small difference between defect imaging and background, low contrast, large variation of defect scale and diverse types, and large amount of noise in defect images. Jujubes are naturally growing plants, and the appearance of the same type of surface defect can vary greatly, so it is more difficult than industrial products produced according to the prescribed process. In this paper, a ConvNeXt-based high-precision lightweight classification network JujubeNet is presented to address the practical needs of Jujube Surface Defect (JSD) classification. In the proposed method, a Multi-branching module using Depthwise separable Convolution (MDC) is designed to extract more feature information through multi-branching and substantially reduces the number of parameters in the model by using depthwise separable convolutions. What's more, in our proposed method, the Convolutional Block Attention Module (CBAM) is introduced to make the model concentrate on different classes of JSD features. The proposed JujubeNet is compared with other mainstream networks in the actual production environment. The experimental results show that the proposed JujubeNet can achieve 99.1% classification accuracy, which is significantly better than the current mainstream classification models. The FLOPS and parameters are only 30.7% and 30.6% of ConvNeXt-Tiny respectively, indicating that the model can quickly and effectively classify JSD and is of great practical value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA