Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Animals (Basel) ; 14(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891737

RESUMEN

The host's physiological well-being is intricately associated with the gut microbiota. However, previous studies regarding the intestinal microbiota have focused on domesticated or captive birds. This study used high-throughput sequencing technology to identify the gut bacterial communities of sympatric bean geese, hooded cranes, and domestic geese. The results indicated that the gut bacterial diversity in domestic geese and hooded cranes showed considerably higher diversity than bean geese. The gut bacterial community compositions varied significantly among the three hosts (p < 0.05). Compared to the hooded crane, the bean goose and domestic goose were more similar in their genotype and evolutionary history, with less difference in the bacterial community composition and assembly processes between the two species. Thus, the results might support the crucial role of host genotypes on their gut microbiota. The gut bacteria of wild hooded cranes and bean geese had a greater capacity for energy metabolism compared to domestic geese, suggesting that wild birds may rely more on their gut microbiota to survive in cold conditions. Moreover, the intestines of the three hosts were identified as harboring potential pathogens. The relative abundance of pathogens was higher in the hooded crane compared to the other two species. The hooded crane gut bacterial community assemblage revealed the least deterministic process with the lowest filtering/selection on the gut microbiota, which might have been a reason for the highest number of pathogens result. Compared to the hooded crane, the sympatric bean goose showed the least diversity and relative abundance of pathogens. The intestinal bacterial co-occurrence network showed the highest stability in the bean goose, potentially enhancing host resistance to adverse environments and reducing the susceptibility to pathogen invasion. In this study, the pathogens were also discovered to overlap among the three hosts, reminding us to monitor the potential for pathogen transmission between poultry and wild birds. Overall, the current findings have the potential to enhance the understanding of gut bacterial and pathogenic community structures in poultry and wild birds.

2.
ACS Appl Mater Interfaces ; 16(24): 31776-31787, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38858834

RESUMEN

Stimuli-responsive materials have garnered substantial interest in recent years, particularly liquid crystal networks (LCNs) with sophisticatedly designed structures and morphing capabilities. Extensive efforts have been devoted to LCN structural designs spanning from two-dimensional (2D) to three-dimensional (3D) configurations and their intricate morphing behaviors through designed alignment. However, achieving microscale structures and large-area preparation necessitates the development of novel techniques capable of facilely fabricating LCN microstructures with precise control over both overall shape and alignment, enabling a 3D-to-3D shape change. Herein, a simple and cost-effective in-cell soft lithography (ICSL) technique is proposed to create LCN microstructures with customized shapes and predesigned morphing. The ICSL technique involves two sequential steps: fabricating the desired microstructure as the template by using the photopolymerization-induced phase separation (PIPS) method and reproducing the LCN microstructures through templating. Meanwhile, surface anchoring is employed to design and achieve molecular alignment, accommodating different deformation modes. With the proposed ICSL technique, cylindrical and spherical microlens arrays (CMLAs and SMLAs) have been successfully fabricated with stimulus-driven polarization-dependent focusing effects. This technique offers distinct advantages including high customizability, large-area production, and cost-effectiveness, which pave a new avenue for extensive applications in different fields, exemplified by adaptive soft micro-optics and photonics.

3.
Med Ultrason ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808492

RESUMEN

AIM: This study aimed to evaluate the correlation between the elasticity of the anterior and posterior walls of the radial artery in different sections using velocity vector imaging. MATERIAL AND METHODS: In this retrospective analysis, 30 healthy people who underwent physical examination in our hospital from January 2022 to January 2023 were analyzed offline by velocity vector imaging technology. The following parameters were assessed: peak systolic strain (Ss; %), peak diastolic strain (Sd; %), peak systolic strain rate (SRs; 1/s), and peak diastolic strain rate (SRd; 1/s). Elastic function was evaluated by analyzing the systolic and diastolic motion of the arterial walls. RESULT: In the long-axis sections, there was a significant positive correlation between Ss, SRs, and SRd of both the anterior and posterior walls (r=0.531, r=0.803, and r=0.898, all p<0.01). Additionally, Sd showed a positive correlation (r=0.402, p<0.05). In the short-axis sections, there was a significant and positive correlation between SRs and SRd of both walls (r=0.762, r=0.667, both p<0.01). Furthermore, a positive correlation was found between SRd in the long-axis and short-axis sections of the anterior wall (r=0.382, p<0.05). CONCLUSIONS: Velocity vector imaging is a valuable tool for assessing the elasticity of the radial artery in different sections, and the longitudinal SRd in the long-axis section may serve as a highly sensitive and accurate parameter for assessing changes in wall elastic function during the occurrence of radial artery lesions.

4.
Int J Biol Macromol ; 269(Pt 2): 132058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704065

RESUMEN

In clinical practice, tumor-targeting diagnosis and immunotherapy against programmed death ligand 1 (PD-L1) have a significant impact. In this research, a PD-L1-antagonistic affibody dimer (ZPD-L1) was successfully prepared through Escherichia coli expression system, and conjugated with the photosensitizer of ICG via N-hydroxysuccinimide (NHS) ester to develop a novel tumor-targeting agent (ICG-ZPD-L1) for both tumor imaging diagnosis and photothermal-immunotherapy simultaneously. In vitro, ZPD-L1 could specifically bind to PD-L1-positive LLC and MC38 tumor cells, and ICG-ZPD-L1-mediated photothermal therapy (PTT) also showed excellent phototoxicity to these tumor cells. In vivo, ICG-ZPD-L1 selectively enriched into the PD-L1-positive MC38 tumor tissues, and the high-contrast optical imaging of tumors was obtained. ICG-ZPD-L1-mediated PTT exhibited a potent anti-tumor effect in vivo due to its remarkable photothermal properties. Furthermore, ICG-ZPD-L1-mediated PTT significantly induced the immunogenic cell death (ICD) of primary tumors, promoted maturation of dendritic cells (DCs), up-regulated anti-tumor immune response, enhanced immunotherapy, and superiorly inhibited the growth of metastatic tumors. In addition, ICG-ZPD-L1 showed favorable biosafety throughout the brief duration of treatment. In summary, these results suggest that ICG-ZPD-L1 is a multifunctional tumor-targeting drug integrating tumor imaging diagnosis and photothermal-immunotherapy, and has great guiding significance for the diagnosis and treatment of clinical PD-L1-positive tumor patients.


Asunto(s)
Antígeno B7-H1 , Inmunoterapia , Verde de Indocianina , Animales , Antígeno B7-H1/metabolismo , Ratones , Inmunoterapia/métodos , Verde de Indocianina/química , Verde de Indocianina/farmacología , Línea Celular Tumoral , Terapia Fototérmica/métodos , Humanos , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacología , Fototerapia/métodos
5.
Mol Pharm ; 21(3): 1222-1232, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38364870

RESUMEN

The morbidity and mortality of lung cancer are still the highest among all malignant tumors. Radiotherapy plays an important role in clinical treatment of lung cancer. However, the effect of radiotherapy is not ideal due to the radiation resistance of tumor tissues. Abnormalities in tumor vascular structure and function affect blood perfusion, and oxygen transport is impeded, making tumor microenvironment hypoxic. Tumor hypoxia is the major cause of radiotherapy resistance. By promoting tumor vessel normalization and enhancing vascular transport function, tumor hypoxia can be relieved to reduce radiotherapy resistance and increase tumor radiotherapy sensitivity. In our previous study, a pericytes-targeted tumor necrosis factor alpha (named Z-TNFα) was first constructed and produced by genetically fusing the platelet-derived growth factor receptor ß (PDGFRß)-antagonistic affibody (ZPDGFRß) to the TNFα, and the Z-TNFα induced normalization of tumor vessels and improved the delivery of doxorubicin, enhancing tumor chemotherapy. In this study, the tumor vessel normalization effect of Z-TNFα in lung cancer was further clarified. Moreover, the tumor hypoxia improvement and radiosensitizing effect of Z-TNFα were emphatically explored in vivo. Inspiringly, Z-TNFα specifically accumulated in Lewis lung carcinoma (LLC) tumor graft and relieved tumor hypoxia as well as inhibited HIF-1α expression. As expected, Z-TNFα significantly increased the effect of radiotherapy in mice bearing LLC tumor graft. In conclusion, these results demonstrated that Z-TNFα is also a promising radiosensitizer for lung cancer radiotherapy.


Asunto(s)
Neoplasias Pulmonares , Fármacos Sensibilizantes a Radiaciones , Animales , Ratones , Neoplasias Pulmonares/radioterapia , Factor de Necrosis Tumoral alfa/metabolismo , Línea Celular Tumoral , Doxorrubicina , Microambiente Tumoral
6.
Gene ; 899: 148134, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38185290

RESUMEN

This study delineated the elucidate molecular changes and their post-translational modifications (PTMs) in heterogenetic colorectal cancer (CRC) for a deeper understanding of the CRC pathophysiology and identifying potential therapeutic targets. In this retrospective study, the profiles of 13 hot spot gene mutations were analyzed and the microsatellite instability (MSI) status was determined.Employing the Circulating Single-Molecule Amplification and Resequencing Technology (cSMART) assay, the clinical-pathological features of CRC were characterized in 249 Chinese patients. PTMs were quantified online.Among the patients with CRC, the mutation frequencies of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC genes were 47.8%, 3.6%, 4.8%, 13.7%, 55.8%, and 36.9%, respectively. The proportion of MSI-high (MSI-H) was 7.8%.Subsequent multiple logistic regression analysis showed significant associations including a link between lung metastasis and KRAS mutation, between liver metastasis and lymph node metastasis, between MSI-H and early-onset CRC (EOCRC) and KRAS mutation, between right-sided colon cancer and peritoneal metastasis, and between PIK3CA mutation and PTEN mutation. Patients with KRAS mutation presented with MSI-H, lung metastasis, and PIK3CA mutation. MSI-H, BRAF mutation, and PTEN mutation were more frequent in EOCRC. Phosphorylation and ubiquitylation were found in KRAS, BRAF, PTEN, and SMAD4; SUMOylation and ubiquitylation were observed in HRAS and NRAS; while phosphorylation was obvious in APC, P53, and MLH1. Notably, Phosphorylation and ubiquitylation were the two most common PTMs. The biological characteristics of CRC in Chinese patients have some unique clinical features, which can be explained by the genetic mutation profile, correlations among gene mutations and clinical characteristics. These distinctions set the Chinese patient population apart from their Western counterparts.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Estudios Retrospectivos , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Inestabilidad de Microsatélites , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Procesamiento Proteico-Postraduccional , Fosfatidilinositol 3-Quinasa Clase I/genética
7.
BMC Pediatr ; 23(1): 624, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071297

RESUMEN

BACKGROUND: To assess the differences in vitamin D levels in girls with rapidly progressive (RP) or slowly progressive (SP) central precocious puberty (CPP) and to compare whether the factors related to RP-CPP influenced the vitamin D status. A cross-sectional study was performed among girls with CPP classified as RP-CPP or SP-CPP. METHODS: The baseline data, gonadotropin-releasing hormone (GnRH) stimulation test results, serum 25-hydroxyvitamin D (25OHD) levels, and season of sample collection were analyzed. RESULTS: The mean 25OHD level in 340 girls was 15.89 ± 6.87 ng/mL, of whom only 10 (2.9%) had normal levels (≥ 30 ng/mL). A total of 114 girls in the SP-CPP group and 226 in the RP-CPP group had similar chronological age, disease course, height SDS, bone mineral density, baseline follicle-stimulating hormone (FSH), peak FSH, and 25OHD levels. Developmental age, body mass index (BMI), BMI SDS, peak luteinizing hormone (LH)/FSH, insulin-like growth factor 1 (IGF-1), and IGF-1 SDS were independent risk factors for RP-CPP. Significant differences were observed among the different serum 25OHD levels in terms of season, disease course, IGF1 level, and BMI SDS (P < 0.05). Moreover, the sampling season was strongly correlated with serum 25OHD levels (r = 0.402, P < 0.001). CONCLUSION: The vitamin D levels were generally deficient or insufficient in girls with CPP, but were not related to the different types of CPP. High BMI levels, IGF1 levels, or peak LH/FSH ratio, but not vitamin D levels, could promote the progression of RP-CPP. Seasonal factors mainly influenced the vitamin D levels.


Asunto(s)
Pubertad Precoz , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina , Estudios Transversales , Hormona Luteinizante , Hormona Folículo Estimulante , Vitamina D , Vitaminas
8.
Eur J Med Res ; 28(1): 465, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37884970

RESUMEN

BACKGROUND: High-grade serious ovarian carcinoma (HGSOC) is a subtype of ovarian cancer with a different prognosis attributable to genetic heterogeneity. The prognosis of patients with advanced HGSOC requires prediction by genetic markers. This study systematically analyzed gene expression profile data to establish a genetic marker for predicting HGSOC prognosis. METHODS: The RNA-seq data set and information on clinical follow-up of HGSOC were retrieved from Gene Expression Omnibus (GEO) database, and the data were standardized by DESeq2 as a training set. On the other hand, HGSOC RNA sequence data and information on clinical follow-up were retrieved from The Cancer Genome Atlas (TCGA) as a test set. Additionally, ovarian cancer microarray data set was obtained from GEO as the external validation set. Prognostic genes were screened from the training set, and characteristic selection was performed using the least absolute shrinkage and selection operator (LASSO) with 80% re-sampling for 5000 times. Genes with a frequency of more than 2000 were selected as robust biomarkers. Finally, a gene-related prognostic model was validated in both the test and GEO validation sets. RESULTS: A total of 148 genes were found to be significantly correlated with HGSOC prognosis. The expression profile of these genes could stratify HGSOC prognosis and they were enriched to multiple tumor-related regulatory pathways such as tyrosine metabolism and AMPK signaling pathway. AKR1B10 and ANGPT4 were obtained after 5000-time re-sampling by LASSO regression. AKR1B10 was associated with the metastasis and progression of several tumors. In this study, Cox regression analysis was performed to create a 2-gene signature as an independent prognostic factor for HGSOC, which has the ability to stratify risk samples in all three data sets (p < 0.05). The Gene Set Enrichment Analysis (GSEA) discovered abnormally active REGULATION_OF_AUTOPHAGY and OLFACTORY_TRANSDUCTION pathways in the high-risk group samples. CONCLUSION: This study resulted in the creation of a 2-gene molecular prognostic classifier that distinguished clinical features and was a promising novel prognostic tool for assessing the prognosis of HGSOC. RiskScore was a novel prognostic model which might be effective in guiding accurate prognosis of HGSOC.


Asunto(s)
Neoplasias Ováricas , Transcriptoma , Humanos , Femenino , Transcriptoma/genética , Neoplasias Ováricas/genética , Autofagia , Heterogeneidad Genética , Pronóstico
10.
Biochem Biophys Rep ; 34: 101443, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36875797

RESUMEN

Circulating tumor cells (CTCs) are a major cause of tumor metastasis and resistance to anticancer therapies. To date, no effective low-toxicity chemotherapeutic agents or antibodies have exhibited significant clinical activity against CTCs. Macrophages are important mediators of antitumor immunity. Tuftsin (TF), a tetrapeptide located at residues 289-292 of the CH2 domain of the Fc region of the IgG heavy chain, binds to Nrp-1, a receptor on the surface of macrophages that promotes phagocytosis and induces nonspecific activation of the immune system against tumors. Lidamycin (LDM) is an antitumor chemotherapy agent that is strongly cytotoxic to tumors and can dissociate into an apoprotein (LDP) and active enediyne (AE) in vitro. We previously constructed the fusion protein LDP-TF through genetic engineering and inserted the chromophore AE to produce LDM-TF, which can target macrophages to promote their phagocytic and cytotoxic activity against tumor cells. Preliminary experiments confirmed the anti-tumor activity of LDM-TFs. In this study, we found that LDM-TF effectively inhibited the growth of CTCs of gastric cancer origin and enhanced macrophage phagocytosis both in vivo and in vitro. Tumor cell expression of CD47, which helps to evade phagocytosis by macrophages, was substantially downregulated by LDM-TF. Notably, our in vitro experiments demonstrated that the combination of LDM-TF and anti-CD47 antibodies promoted phagocytosis more than either component alone. Our findings demonstrate the significant inhibitory effect of LDM-TF on the growth of CTCs of gastric cancer origin and suggest that the combination of LDM-TF and anti-CD47 antibodies may exhibit synergistic effects, thereby providing a new option for the clinical treatment of patients with advanced tumors that have metastasized.

11.
J Biomed Mater Res B Appl Biomater ; 111(7): 1407-1418, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36930047

RESUMEN

Poly-γ-glutamic acid (PGA) is a naturally degradable hydrophilic linear microbial polymer with moisturizing, immunogenic, cross-linking, and hydrogel water absorption properties similar to hyaluronic acid, a biomaterial that is commonly used as a dermal filler. To explore the development feasibility of cross-linked PGA as a novel dermal filler, we studied the local skin response to PGA fillers and the effect of various cross-linking preparations on the average longevity of dermal injection. Injection site inflammation and the formation of collagen and elastin were also determined. PGA hydrogel particles prepared using 28% PGA and 10% 1,4-butanediol diglycidyl ether showed optimal filler properties, resistance to moist heat sterilization, and an average filling longevity of 94.7 ± 61.6 days in the dermis of rabbit ears. Local redness and swelling due to filler injection recovered within 14.2 ± 3.6 days. Local tissue necrosis or systemic allergic reactions were not observed, and local collagen formation was promoted. Preliminary results suggested that dermal injection of cross-linked PGA particles appeared safe and effective, suggesting that cross-linked PGA particles could be developed as a new hydrogel dermal filler.


Asunto(s)
Rellenos Dérmicos , Hidrogeles , Animales , Conejos , Materiales Biocompatibles , Butileno Glicoles , Excipientes , Ácido Glutámico , Ácido Hialurónico , Hidrogeles/farmacología
12.
Environ Technol ; 44(2): 240-250, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34383609

RESUMEN

Full mineralization of organic pollutants is a tough task with existing technologies. Even if all conventional energies and extremes are exhausted, high-temperature wastewater treatment is not worth the loss from the perspective of energy. Solar engineering holds promise for the full mineralization of organic pollutants to tackle the global fossil energy shortage. Here, we report solar engineering for full mineralization and efficient solar utilization. The solar energies and spectrum were fully utilized to initiate the solar heat and solar electricity. Two energies were applied to trigger the thermochemical and electrochemical oxidation of the organic pollutants. Our study bridges the gap between the energy and environment towards efficient solar utilization and effective water treatment. As a proof-of-concept study, this demonstrates a solar engineering of full phenol mineralization in wastewater. A record phenol mineralization rate was achieved to reach an oxidation rate of 98% and COD of 93% under a constant current density of 50mA/cm2 at 150°C. UV and HPLC were used to detect the intermediate products during variable time intervals. The results showed that the intermediate products are composed of maleic acid, hydroquinone and p-benzoquinone. In the extreme high temperature (90°C), the solar oxidation time and pathway are greatly altered. The reaction rate constant at 150°C is about 11 times than that at 90°C. More solar heat significantly reduces the activated energy of the pollutant oxidation and lowers the potential of electrolysis.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Luz Solar , Aguas Residuales , Fenoles , Fenol , Purificación del Agua/métodos , Oxidación-Reducción , Electrodos
13.
Mol Pharm ; 20(1): 427-437, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36315025

RESUMEN

Human epidermal growth factor receptor 2 (Her2) is abundantly expressed in various solid tumors. The Her2-specific Affibody (ZHer2:2891) has been clinically tested in patients with Her2-positive breast cancer and is regarded as an ideal drug carrier for tumor diagnosis and targeted treatment. Indocyanine green (ICG) can be used as a photosensitizer for photothermal therapy (PTT), in addition to fluorescent dyes for tumor imaging. In this study, a dimeric Her2-specific Affibody (ZHer2) based on ZHer2:2891 was prepared using the E. coli expression system and then coupled to ICG through an N-hydroxysuccinimide (NHS) ester reactive group to construct a novel bifunctional protein drug (named ICG-ZHer2) for tumor diagnosis and PTT. In vitro, ICG-ZHer2-mediated PTT selectively and efficiently killed Her2-positive BT-474 and SKOV-3 tumor cells rather than Her2-negative HeLa tumor cells. In vivo, ICG-ZHer2 specifically accumulated in Her2-positive SKOV-3 tumor grafts rather than Her2-negative HeLa tumor grafts; high-contrast tumor optical images were obtained. However, Her2-negative HeLa tumor grafts were not detected. More importantly, ICG-ZHer2-mediated PTT exhibited a significantly enhanced antitumor effect in mice bearing SKOV-3 tumor grafts owing to the good photothermal properties of ICG-ZHer2. Of note, ICG-ZHer2 did not exhibit acute toxicity in mice during short-term treatment. Overall, our findings indicate that ICG-ZHer2 is a promising bifunctional drug for Her2-positive tumor diagnosis and PTT.


Asunto(s)
Neoplasias , Terapia Fototérmica , Animales , Humanos , Ratones , Línea Celular Tumoral , Verde de Indocianina , Neoplasias/diagnóstico por imagen , Neoplasias/terapia
14.
Nat Commun ; 13(1): 5823, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192549

RESUMEN

Rigorously designed sub-micrometer structure arrays are widely used in metasurfaces for light modulation. One of the glaring restrictions is the unavailability of easily accessible fabrication methods to efficiently produce large-area and freely designed structure arrays with nanoscale resolution. We develop a patterned pulse laser lithography (PPLL) approach to create structure arrays with sub-wavelength feature resolution and periods from less than 1 µm to over 15 µm on large-area thin films with substrates under ambient conditions. Separated ultrafast laser pulses with patterned wavefront by quasi-binary phase masks rapidly create periodic ablated/modified structures by high-speed scanning. The gradient intensity boundary and circular polarization of the wavefront weaken diffraction and polarization-dependent asymmetricity effects during light propagation for high uniformity. Structural units of metasurfaces are obtained on metal and inorganic photoresist films, such as antennas, catenaries, and nanogratings. We demonstrate a large-area metasurface (10 × 10 mm2) revealing excellent infrared absorption (3-7 µm), which comprises 250,000 concentric rings and takes only 5 minutes to produce.

15.
ACS Appl Mater Interfaces ; 14(42): 48276-48284, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36228148

RESUMEN

Flexible multidirectional strain sensors capable of simultaneously detecting strain amplitudes and directions have attracted tremendous interest. Herein, we propose a flexible multidirectional strain sensor based on a newly designed single-layer hierarchical aligned micro-/nanowire (HAMN) network. The HAMN network is efficiently fabricated using a one-step femtosecond laser patterning technology based on a modulated line-shaped beam. The anisotropic performance is attributed to the significantly different morphological changes caused by an inhomogeneous strain redistribution among the HAMN network. The fabricated strain sensor exhibits high sensitivity (gauge factor of 65 under 2.5% strain and 462 under larger strains), low response/recovery time (140 and 322 ms), and good stability (over 1000 cycles). Moreover, this single-layer strain sensor with high selectivity (gauge factor differences of ∼73 between orthogonal strains) is capable of distinguishing multidimensional strains and exhibits decoupled responses under low strains (<1%). Therefore, the strain sensors enable the precise monitoring of subtle movements, including radial pulses and wrist bending, and the rectification of pen-holding posture. Benefitting from these remarkable performances, the HAMN-based strain sensors show potential applications, including healthcare and complex human motion monitoring.

16.
ACS Omega ; 7(37): 33443-33452, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36157761

RESUMEN

Solar-boosted oxidation plus hydrogen production for pollutant removal in wastewater, driven by a high thermal and low-potential electrochemical combination, is facilitated and demonstrated from theory to experiments. One sun fully offers both thermal and electrical energy powered thermo- and electrochemistry for pollutant oxidation. Solar thermal action provides high temperatures for the activation of the pollutant molecules to gear up for solar-driven electrochemical oxidation. Taking wastewater containing phenol as an example, the cyclic voltammetry (CV) curves display two redox processes at less than 100 °C, while only one redox process of single oxidation of phenol appears at more than 100 °C. The oxidation of phenol is accompanied by an efficient evolution of hydrogen, in which the yield of 0.627 mL at 30 °C is increased to 2.294 mL at 210 °C. The phenol removal is enhanced to 80.50% at 210 °C. Tracking the reaction progress shows that small molecular organic acids are detected as the only intermediate at the high temperatures, which suggests the easy realization of full mineralization. The kinetic reaction of the phenol oxidation is fitted to the first order with an increase of the rate constant of 10 times compared with that at low temperatures. Solar engineering of oxidation of organic pollutants not only solves the issue of energy demand for the tough wastewater treatment but also realizes fast and efficient oxidation of organic pollutants. This study opens up new avenues to achieve solar wastewater treatment and simultaneous hydrogen production.

17.
Mater Horiz ; 9(10): 2496-2517, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35920729

RESUMEN

The scarcity of clean water has become a global environmental problem which constrains the development of public health, economy, and sustainability. In recent years, natural polyphenols have drawn increasing interests as promising platforms towards diverse water remediation composites and devices, owing to their abundant and renewable resource in nature, highly active surface chemistry, and multifunctionality. This review aims to summarize the most recent advances and highlights of natural polyphenol-based composite materials (e.g., nanofibers, membranes, particles, and hydrogels) for water remediation, by focusing on their structural and functional features, as well as their diversified applications including membrane filtration, solar distillation, adsorption, advanced oxidation processes, and disinfection. Finally, the future challenges in this field are also prospected. It is anticipated that this review will provide new opportunities towards the future development of natural polyphenols and other kinds of naturally occurring molecules in water purification applications.


Asunto(s)
Purificación del Agua , Agua , Adsorción , Hidrogeles , Polifenoles
18.
J Mater Chem B ; 10(32): 6078-6106, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35929405

RESUMEN

In recent years, a variety of novel materials and processing technologies have been developed to prepare tissue engineering scaffolds for bone defect repair. Among them, nanofibers fabricated via electrospinning technology have attracted much interest owing to the unique feature of highly mimicking the natural bone extracellular matrix. In particular, many achievements have been made in this field over the past several years. Therefore, this review aims to summarize the most recent advances and highlights of electrospun nanofibers in bone regeneration applications, by focusing on their material compositions (synthetic polymers, natural polymers, composite nanofibers, and hybrid nanofibers), structural regulation strategies (aligned structures, core-shell structures, gradient structures, and three-dimensional structures), function regulation achievements (biomineralization, osteogenesis, vascularization, immunomodulatory, and anti-infection), and combination with other emerging scaffold fabrication technologies (3D printing, electrospraying, and microfluidics). Finally, the future challenges of nanofibrous scaffolds in this field are also discussed briefly. It is anticipated that this review will provide useful insights into the future development of nanofibrous scaffolds in tissue engineering and bone regeneration applications.


Asunto(s)
Nanofibras , Biomimética , Regeneración Ósea/fisiología , Nanofibras/química , Polímeros/química , Andamios del Tejido/química
19.
Eur J Pharm Biopharm ; 178: 82-93, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35932965

RESUMEN

Co-amorphous strategy has been extensively investigated to improve the dissolution of hydrophobic drugs. Here, epigallocatechin-3-gallate (EGCG) was exploited as a co-former in co-amorphous systems based on its unique structure including phenyl rings, phenolic hydroxyl groups and the galloyl moiety. Two model BCS class II drugs, simvastatin (SIM) and nifedipine (NIF), were selected to be co-amorphized with EGCG. All drug-EGCG systems at three molar ratios became amorphous by the means of spray drying and showed high physically stable either under dry condition and 75 % RH at 40 °C or under dry conditions at 25 °C. The optimal feed molar ratios of both EGCG based co-amorphous systems fabricated were determined to be three, under which the significant increases were obtained in the maximum apparent concentrations of 4.90-fold for SIM at 1 h and 106.03-fold for NIF at 0.25 h compared to crystalline drugs by non-sink dissolution studies. The underlying molecular mechanisms of two co-amorphous systems formation were involved in molecular miscibility, hydrogen bonds and π-π stacking interactions unraveled by means of DSC, FTIR and molecular dynamics simulations. More to the point, oral pharmacokinetic studies in rats demonstrated that co-amorphous SIM-EGCG and NIF-EGCG systems at 1:3 have a significant increase in Cmax of 1.81- and 5.69-fold, and AUC 0-24h of 1.62- and 4.57-fold compared with those of corresponding crystalline drugs, respectively. In conclusion, EGCG is proved to be a promising co-former in co-amorphous systems.


Asunto(s)
Nifedipino , Simvastatina , Animales , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Catequina/análogos & derivados , Estabilidad de Medicamentos , Nifedipino/química , Ratas , Simvastatina/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
20.
Nano Lett ; 22(15): 6223-6228, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35849492

RESUMEN

This paper proposes a one-step maskless 2D nanopatterning approach named self-aligned plasmonic lithography (SPL) by line-shaped ultrafast laser ablation under atmospheric conditions for the first time. Through a theoretical calculation of electric field and experimental verification, we proved that homogeneous interference of laser-excited surface plasmon polaritons (SPPs) can be achieved and used to generate long-range ordered 2D nanostructures in a self-aligned way over a wafer-sized area within several minutes. Moreover, the self-aligned nanostructures can be freely transferred between embossed nanopillars and engraved nanoholes by modulating the excitation intensity of SPPs interference through altering the incident laser energy. The SPL technique exhibits further controllability in the shape, orientation, and period of achievable nanopatterns on a wide range of semiconductors and metals by tuning processing parameters. Nanopatterned films can further act as masks to transfer structures into other bulk materials, as demonstrated in silica.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...