Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 153
1.
bioRxiv ; 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38712255

Recent technological developments have made it possible to map the spatial organization of a tissue at the single-cell resolution. However, computational methods for analyzing spatially continuous variations in tissue microenvironment are still lacking. Here we present ONTraC as a strategy that constructs niche trajectories using a graph neural network-based modeling framework. Our benchmark analysis shows that ONTraC performs more favorably than existing methods for reconstructing spatial trajectories. Applications of ONTraC to public spatial transcriptomics datasets successfully recapitulated the underlying anatomical structure, and further enabled detection of tissue microenvironment-dependent changes in gene regulatory networks and cell-cell interaction activities during embryonic development. Taken together, ONTraC provides a useful and generally applicable tool for the systematic characterization of the structural and functional organization of tissue microenvironments.

2.
BMC Bioinformatics ; 25(1): 164, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664601

Multimodal integration combines information from different sources or modalities to gain a more comprehensive understanding of a phenomenon. The challenges in multi-omics data analysis lie in the complexity, high dimensionality, and heterogeneity of the data, which demands sophisticated computational tools and visualization methods for proper interpretation and visualization of multi-omics data. In this paper, we propose a novel method, termed Orthogonal Multimodality Integration and Clustering (OMIC), for analyzing CITE-seq. Our approach enables researchers to integrate multiple sources of information while accounting for the dependence among them. We demonstrate the effectiveness of our approach using CITE-seq data sets for cell clustering. Our results show that our approach outperforms existing methods in terms of accuracy, computational efficiency, and interpretability. We conclude that our proposed OMIC method provides a powerful tool for multimodal data analysis that greatly improves the feasibility and reliability of integrated data.


Single-Cell Analysis , Cluster Analysis , Single-Cell Analysis/methods , Computational Biology/methods , Humans , Algorithms
3.
Nat Commun ; 15(1): 1274, 2024 Feb 10.
Article En | MEDLINE | ID: mdl-38341433

Although emerging evidence indicates that alterations in proteins within nuclear compartments elicit changes in chromosomal architecture and differentiation, the underlying mechanisms are not well understood. Here we investigate the direct role of the abundant nuclear complex protein Matrin3 (Matr3) in chromatin architecture and development in the context of myogenesis. Using an acute targeted protein degradation platform (dTAG-Matr3), we reveal the dynamics of development-related chromatin reorganization. High-throughput chromosome conformation capture (Hi-C) experiments revealed substantial chromatin loop rearrangements soon after Matr3 depletion. Notably, YY1 binding was detected, accompanied by the emergence of novel YY1-mediated enhancer-promoter loops, which occurred concurrently with changes in histone modifications and chromatin-level binding patterns. Changes in chromatin occupancy by Matr3 also correlated with these alterations. Overall, our results suggest that Matr3 mediates differentiation through stabilizing chromatin accessibility and chromatin loop-domain interactions, and highlight a conserved and direct role for Matr3 in maintenance of chromosomal architecture.


Chromatin , Enhancer Elements, Genetic , Nuclear Matrix-Associated Proteins , RNA-Binding Proteins , Cell Nucleus , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromosomes , Promoter Regions, Genetic/genetics , Humans , RNA-Binding Proteins/metabolism , Nuclear Matrix-Associated Proteins/metabolism
4.
Front Genet ; 15: 1322886, 2024.
Article En | MEDLINE | ID: mdl-38327830

Cell-cell interaction (CCI) plays a pivotal role in cellular communication within the tissue microenvironment. The recent development of spatial transcriptomics (ST) technology and associated data analysis methods has empowered researchers to systematically investigate CCI. However, existing methods are tailored to single-cell resolution datasets, whereas the majority of ST platforms lack such resolution. Additionally, the detection of CCI through association screening based on ST data, which has complicated dependence structure, necessitates proper control of false discovery rates due to the multiple hypothesis testing issue in high dimensional spaces. To address these challenges, we introduce RECCIPE, a novel method designed for identifying cell signaling interactions across multiple cell types in spatial transcriptomic data. RECCIPE integrates gene expression data, spatial information and cell type composition in a multivariate regression framework, enabling genome-wide screening for changes in gene expression levels attributed to CCIs. We show that RECCIPE not only achieves high accuracy in simulated datasets but also provides new biological insights from real data obtained from a mouse model of Alzheimer's disease (AD). Overall, our framework provides a useful tool for studying impact of cell-cell interactions on gene expression in multicellular systems.

5.
Blood ; 143(12): 1124-1138, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38153903

ABSTRACT: The CD161 inhibitory receptor is highly upregulated by tumor-infiltrating T cells in multiple human solid tumor types, and its ligand, CLEC2D, is expressed by both tumor cells and infiltrating myeloid cells. Here, we assessed the role of the CD161 receptor in hematological malignancies. Systematic analysis of CLEC2D expression using the Cancer Cell Line Encyclopedia revealed that CLEC2D messenger RNA was most abundant in hematological malignancies, including B-cell and T-cell lymphomas as well as lymphocytic and myelogenous leukemias. CLEC2D protein was detected by flow cytometry on a panel of cell lines representing a diverse set of hematological malignancies. We, therefore, used yeast display to generate a panel of high-affinity, fully human CD161 monoclonal antibodies (mAbs) that blocked CLEC2D binding. These mAbs were specific for CD161 and had a similar affinity for human and nonhuman primate CD161, a property relevant for clinical translation. A high-affinity CD161 mAb enhanced key aspects of T-cell function, including cytotoxicity, cytokine production, and proliferation, against B-cell lines originating from patients with acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and Burkitt lymphoma. In humanized mouse models, this CD161 mAb enhanced T-cell-mediated immunity, resulting in a significant survival benefit. Single cell RNA-seq data demonstrated that CD161 mAb treatment enhanced expression of cytotoxicity genes by CD4 T cells as well as a tissue-residency program by CD4 and CD8 T cells that is associated with favorable survival outcomes in multiple human cancer types. These fully human mAbs, thus, represent potential immunotherapy agents for hematological malignancies.


Hematologic Neoplasms , Neoplasms , Animals , Mice , Humans , CD4-Positive T-Lymphocytes , Immunity, Cellular , CD8-Positive T-Lymphocytes , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Hematologic Neoplasms/genetics , Hematologic Neoplasms/therapy , NK Cell Lectin-Like Receptor Subfamily B/genetics
6.
bioRxiv ; 2023 Nov 27.
Article En | MEDLINE | ID: mdl-38077085

Emerging spatial omics technologies continue to advance the molecular mapping of tissue architecture and the investigation of gene regulation and cellular crosstalk, which in turn provide new mechanistic insights into a wide range of biological processes and diseases. Such technologies provide an increasingly large amount of information content at multiple spatial scales. However, representing and harmonizing diverse spatial datasets efficiently, including combining multiple modalities or spatial scales in a scalable and flexible manner, remains a substantial challenge. Here, we present Giotto Suite, a suite of open-source software packages that underlies a fully modular and integrated spatial data analysis toolbox. At its core, Giotto Suite is centered around an innovative and technology-agnostic data framework embedded in the R software environment, which allows the representation and integration of virtually any type of spatial omics data at any spatial resolution. In addition, Giotto Suite provides both scalable and extensible end-to-end solutions for data analysis, integration, and visualization. Giotto Suite integrates molecular, morphology, spatial, and annotated feature information to create a responsive and flexible workflow for multi-scale, multi-omic data analyses, as demonstrated here by applications to several state-of-the-art spatial technologies. Furthermore, Giotto Suite builds upon interoperable interfaces and data structures that bridge the established fields of genomics and spatial data science, thereby enabling independent developers to create custom-engineered pipelines. As such, Giotto Suite creates an immersive ecosystem for spatial multi-omic data analysis.

7.
bioRxiv ; 2023 Nov 22.
Article En | MEDLINE | ID: mdl-38045285

Kidney injury disrupts the intricate renal architecture and triggers limited regeneration, and injury-invoked inflammation and fibrosis. Deciphering molecular pathways and cellular interactions driving these processes is challenging due to the complex renal architecture. Here, we applied single cell spatial transcriptomics to examine ischemia-reperfusion injury in the mouse kidney. Spatial transcriptomics revealed injury-specific and spatially-dependent gene expression patterns in distinct cellular microenvironments within the kidney and predicted Clcf1-Crfl1 in a molecular interplay between persistently injured proximal tubule cells and neighboring fibroblasts. Immune cell types play a critical role in organ repair. Spatial analysis revealed cellular microenvironments resembling early tertiary lymphoid structures and identified associated molecular pathways. Collectively, this study supports a focus on molecular interactions in cellular microenvironments to enhance understanding of injury, repair and disease.

8.
bioRxiv ; 2023 Dec 07.
Article En | MEDLINE | ID: mdl-38106025

Spatially resolved transcriptomics (SRT) have enabled profiling spatial organization of cells and their transcriptome in situ. Various analytical methods have been developed to uncover cell-cell interaction processes using SRT data. To improve upon existing efforts, we developed a novel statistical framework called QuadST for the robust and powerful identification of interaction-changed genes (ICGs) for cell-type-pair specific interactions on a single-cell SRT dataset. QuadST is motivated by the idea that in the presence of cell-cell interaction, gene expression level can vary with cell-cell distance between cell type pairs, which can be particularly pronounced within and in the vicinity of cell-cell interaction distance. Specifically, QuadST infers ICGs in a specific cell type pair's interaction based on a quantile regression model, which allows us to assess the strength of distance-expression association across entire distance quantiles conditioned on gene expression level. To identify ICGs, QuadST performs a hypothesis testing with an empirically estimated FDR, whose upper bound is determined by the ratio of cumulative associations at symmetrically smaller and larger distance quantiles simultaneously across all genes. Simulation studies illustrate that QuadST provides consistent FDR control and better power performance than other compared methods. Its application on SRT datasets profiled from mouse brains demonstrates that QuadST can identify ICGs presumed to play a role in specific cell type pair interactions (e.g., synaptic pathway genes among excitatory neuron cell interactions). These results suggest that QuadST can be a useful tool to discover genes and regulatory processes involved in specific cell type pair interactions.

9.
BMC Genomics ; 24(1): 614, 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37833630

BACKGROUND: Chromosomal compartmentalization plays a critical role in maintaining proper transcriptional programs in cell differentiation and oncogenesis. However, currently the prevalent method for comparative analysis of compartmentalization landscapes between different cell types is limited to the qualitative switched compartments. RESULTS: To identify genomic regions with quantitatively differential compartmentalization changes from genome-wide chromatin conformation data like Hi-C, we developed a computational framework named DARIC. DARIC includes three modules: compartmentalization quantification, normalization, and differential analysis. Comparing DARIC with the conventional compartment switching analysis reveals substantial regions characterized by quantitatively significant compartmentalization changes without switching. These changes are accompanied by changes in gene expression, chromatin accessibility, H3K27ac intensity, as well as the interactions with nuclear lamina proteins and nuclear positioning, highlighting the functional importance of such quantitative changes in gene regulation. We applied DARIC to dissect the quantitative compartmentalization changes during human cardiomyocyte differentiation and identified two distinct mechanisms for gene activation based on the association with compartmentalization changes. Using the quantitative compartmentalization measurement module from DARIC, we further dissected the compartment variability landscape in the human genome by analyzing a compendium of 32 Hi-C datasets from 4DN. We discovered an interesting correlation between compartmentalization variability and sub-compartments. CONCLUSIONS: DARIC is a useful tool for analyzing quantitative compartmentalization changes and mining novel biological insights from increasing Hi-C data. Our results demonstrate the functional significance of quantitative compartmentalization changes in gene regulation, and provide new insights into the relationship between compartmentalization variability and sub-compartments in the human genome.


Chromatin , Chromosomes , Humans , Chromatin/genetics , Genome, Human , Gene Expression Regulation , Genomics
10.
Sci Adv ; 9(41): eadg3754, 2023 10 13.
Article En | MEDLINE | ID: mdl-37824614

The cellular complexity of the human brain is established via dynamic changes in gene expression throughout development that is mediated, in part, by the spatiotemporal activity of cis-regulatory elements (CREs). We simultaneously profiled gene expression and chromatin accessibility in 45,549 cortical nuclei across six broad developmental time points from fetus to adult. We identified cell type-specific domains in which chromatin accessibility is highly correlated with gene expression. Differentiation pseudotime trajectory analysis indicates that chromatin accessibility at CREs precedes transcription and that dynamic changes in chromatin structure play a critical role in neuronal lineage commitment. In addition, we mapped cell type-specific and temporally specific genetic loci implicated in neuropsychiatric traits, including schizophrenia and bipolar disorder. Together, our results describe the complex regulation of cell composition at critical stages in lineage determination and shed light on the impact of spatiotemporal alterations in gene expression on neuropsychiatric disease.


Chromatin , Multiomics , Humans , Chromatin/genetics , Chromatin/metabolism , Regulatory Sequences, Nucleic Acid , Cell Differentiation/genetics , Brain/metabolism
11.
bioRxiv ; 2023 Jun 05.
Article En | MEDLINE | ID: mdl-37333091

Ulcerative colitis (UC) is an idiopathic chronic inflammatory disease of the colon with sharply rising global prevalence. Dysfunctional epithelial compartment (EC) dynamics are implicated in UC pathogenesis although EC-specific studies are sparse. Applying orthogonal high-dimensional EC profiling to a Primary Cohort (PC; n=222), we detail major epithelial and immune cell perturbations in active UC. Prominently, reduced frequencies of mature BEST4+OTOP2+ absorptive and BEST2+WFDC2+ secretory epithelial enterocytes were associated with the replacement of homeostatic, resident TRDC+KLRD1+HOPX+ γδ+ T cells with RORA+CCL20+S100A4+ TH17 cells and the influx of inflammatory myeloid cells. The EC transcriptome (exemplified by S100A8, HIF1A, TREM1, CXCR1) correlated with clinical, endoscopic, and histological severity of UC in an independent validation cohort (n=649). Furthermore, therapeutic relevance of the observed cellular and transcriptomic changes was investigated in 3 additional published UC cohorts (n=23, 48 and 204 respectively) to reveal that non-response to anti-Tumor Necrosis Factor (anti-TNF) therapy was associated with EC related myeloid cell perturbations. Altogether, these data provide high resolution mapping of the EC to facilitate therapeutic decision-making and personalization of therapy in patients with UC.

12.
Res Sq ; 2023 Apr 28.
Article En | MEDLINE | ID: mdl-37162846

Background: Chromosomal compartmentalization plays a critical role in maintaining proper transcriptional programs in cell differentiation and oncogenesis. However, currently the prevalent method for comparative analysis of compartmentalization landscapes between different cell types is limited to the qualitative switched compartments. Results: To identify genomic regions with quantitatively differential compartmentalization changes from genome-wide chromatin conformation data like Hi-C, we developed a computational framework named DARIC. DARIC includes three modules: compartmentalization quantification, normalization, and differential analysis. Comparing DARIC with the conventional compartment switching analysis reveals substantial regions characterized by quantitatively significant compartmentalization changes without switching. These changes are accompanied by changes in gene expression, chromatin accessibility, H3K27ac intensity, as well as the interactions with nuclear lamina proteins and nuclear positioning, highlighting the functional importance of such quantitative changes in gene regulation. We applied DARIC to dissect the quantitative compartmentalization changes during human cardiomyocyte differentiation and identified two distinct mechanisms for gene activation based on the association with compartmentalization changes. Using the quantitative compartmentalization measurement module from DARIC, we further dissected the compartment variability landscape in the human genome by analyzing a compendium of 32 Hi-C datasets from 4DN. We discovered an interesting correlation between compartmentalization variability and sub-compartments. Conclusions: DARIC is a useful tool for analyzing quantitative compartmentalization changes and mining novel biological insights from increasing Hi-C data. Our results demonstrate the functional significance of quantitative compartmentalization changes in gene regulation, and provide new insights into the relationship between compartmentalization variability and sub-compartments in the human genome.

13.
Dev Cell ; 58(10): 898-914.e7, 2023 05 22.
Article En | MEDLINE | ID: mdl-37071996

Cardiomyocyte differentiation continues throughout murine gestation and into the postnatal period, driven by temporally regulated expression changes in the transcriptome. The mechanisms that regulate these developmental changes remain incompletely defined. Here, we used cardiomyocyte-specific ChIP-seq of the activate enhancer marker P300 to identify 54,920 cardiomyocyte enhancers at seven stages of murine heart development. These data were matched to cardiomyocyte gene expression profiles at the same stages and to Hi-C and H3K27ac HiChIP chromatin conformation data at fetal, neonatal, and adult stages. Regions with dynamic P300 occupancy exhibited developmentally regulated enhancer activity, as measured by massively parallel reporter assays in cardiomyocytes in vivo, and identified key transcription factor-binding motifs. These dynamic enhancers interacted with temporal changes of the 3D genome architecture to specify developmentally regulated cardiomyocyte gene expressions. Our work provides a 3D genome-mediated enhancer activity landscape of murine cardiomyocyte development.


Enhancer Elements, Genetic , Myocytes, Cardiac , Animals , Mice , Chromatin , Promoter Regions, Genetic , Transcriptome
14.
iScience ; 26(1): 105861, 2023 Jan 20.
Article En | MEDLINE | ID: mdl-36624845

Epithelial ovarian cancer (EOC) can originate from either fallopian tube epithelial (FTE) or ovarian surface epithelial (OSE) cells, but with different latencies and disease outcomes. To address the basis of these differences, we performed single cell RNA-sequencing of mouse cells isolated from the distal half of fallopian tube (FT) and surface layer of ovary. We find at the molecular level, FTE secretory stem/progenitor cells and OSE cells resemble mammary luminal progenitors and basal cells, respectively. An FT stromal subpopulation, enriched with Pdgfra + and Esr1 + cells, expresses multiple secreted factor (e.g., IGF1) and Hedgehog pathway genes and may serve as a niche for FTE cells. In contrast, Lgr5 + OSE cells express similar genes largely by themselves, raising a possibility that they serve as their own niche. The differences in intrinsic expression programs and niche organizations of FTE and OSE cells may contribute to their different courses toward the development of EOCs.

15.
Nucleic Acids Res ; 51(2): 501-516, 2023 01 25.
Article En | MEDLINE | ID: mdl-35929025

Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal-Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging.


How many cell types are there in nature? How do they change during the life cycle? These are two fundamental questions that researchers have been trying to understand in the area of biology. In this study, single-cell mRNA sequencing data were used to profile over 2.6 million individual cells from mice, zebrafish and Drosophila at different life stages, 1.3 million of which were newly collected. The comprehensive datasets allow investigators to construct a cross-species cell landscape that helps to reveal the conservation and diversity of cell taxonomies at genetic and regulatory levels. The resources in this study are assembled into a publicly available website at http://bis.zju.edu.cn/cellatlas/.


Single-Cell Analysis , Animals , Mice , Sequence Analysis, RNA , Zebrafish/growth & development , Drosophila/growth & development
16.
bioRxiv ; 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38168252

It is well known that the chromatin states play a major role in cell-fate decision and cell-identity maintenance; however, the spatial variation of chromatin states in situ remains poorly characterized. Here, by leveraging recently available spatial-CUT&Tag data, we systematically characterized the global spatial organization of the H3K4me3 profiles in a mouse embryo. Our analysis identified a subset of genes with spatially coherent H3K4me3 patterns, which together delineate the tissue boundaries. The spatially coherent genes are strongly enriched with tissue-specific transcriptional regulators. Remarkably, their corresponding genomic loci are marked by broad H3K4me3 domains, which is distinct from the typical H3K4me3 signature. Spatial transition across tissue boundaries is associated with continuous shortening of the broad H3K4me3 domains as well as expansion of H3K27me3 domains. Our analysis reveals a strong connection between the genomic and spatial variation of chromatin states, which may play an important role in embryonic development.

17.
Nature ; 606(7916): 992-998, 2022 06.
Article En | MEDLINE | ID: mdl-35614223

Most cancer vaccines target peptide antigens, necessitating personalization owing to the vast inter-individual diversity in major histocompatibility complex (MHC) molecules that present peptides to T cells. Furthermore, tumours frequently escape T cell-mediated immunity through mechanisms that interfere with peptide presentation1. Here we report a cancer vaccine that induces a coordinated attack by diverse T cell and natural killer (NK) cell populations. The vaccine targets the MICA and MICB (MICA/B) stress proteins expressed by many human cancers as a result of DNA damage2. MICA/B serve as ligands for the activating NKG2D receptor on T cells and NK cells, but tumours evade immune recognition by proteolytic MICA/B cleavage3,4. Vaccine-induced antibodies increase the density of MICA/B proteins on the surface of tumour cells by inhibiting proteolytic shedding, enhance presentation of tumour antigens by dendritic cells to T cells and augment the cytotoxic function of NK cells. Notably, this vaccine maintains efficacy against MHC class I-deficient tumours resistant to cytotoxic T cells through the coordinated action of NK cells and CD4+ T cells. The vaccine is also efficacious in a clinically important setting: immunization following surgical removal of primary, highly metastatic tumours inhibits the later outgrowth of metastases. This vaccine design enables protective immunity even against tumours with common escape mutations.


Myelodysplastic Syndromes , Neoplasms , Skin Diseases, Genetic , Vaccines , Histocompatibility Antigens Class I , Humans , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Neoplasms/prevention & control
18.
Curr Protoc ; 2(4): e405, 2022 Apr.
Article En | MEDLINE | ID: mdl-35384407

Spatial transcriptomic technologies have been developed rapidly in recent years. The addition of spatial context to expression data holds the potential to revolutionize many fields in biology. However, the lack of computational tools remains a bottleneck that is preventing the broader utilization of these technologies. Recently, we have developed Giotto as a comprehensive, generally applicable, and user-friendly toolbox for spatial transcriptomic data analysis and visualization. Giotto implements a rich set of algorithms to enable robust spatial data analysis. To help users get familiar with the Giotto environment and apply it effectively in analyzing new datasets, we will describe the detailed protocols for applying Giotto without any advanced programming skills. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Getting Giotto set up for use Basic Protocol 2: Pre-processing Basic Protocol 3: Clustering and cell-type identification Basic Protocol 4: Cell-type enrichment and deconvolution analyses Basic Protocol 5: Spatial structure analysis tools Basic Protocol 6: Spatial domain detection by using a hidden Markov random field model Support Protocol 1: Spatial proximity-associated cell-cell interactions Support Protocol 2: Assembly of a registered 3D Giotto object from 2D slices.


Algorithms , Transcriptome , Spatial Analysis
19.
Mol Cell ; 82(6): 1140-1155.e11, 2022 03 17.
Article En | MEDLINE | ID: mdl-35245435

MLL rearrangements produce fusion oncoproteins that drive leukemia development, but the direct effects of MLL-fusion inactivation remain poorly defined. We designed models with degradable MLL::AF9 where treatment with small molecules induces rapid degradation. We leveraged the kinetics of this system to identify a core subset of MLL::AF9 target genes where MLL::AF9 degradation induces changes in transcriptional elongation within 15 minutes. MLL::AF9 degradation subsequently causes loss of a transcriptionally active chromatin landscape. We used this insight to assess the effectiveness of small molecules that target members of the MLL::AF9 multiprotein complex, specifically DOT1L and MENIN. Combined DOT1L/MENIN inhibition resembles MLL::AF9 degradation, whereas single-agent treatment has more modest effects on MLL::AF9 occupancy and gene expression. Our data show that MLL::AF9 degradation leads to decreases in transcriptional elongation prior to changes in chromatin landscape at select loci and that combined inhibition of chromatin complexes releases the MLL::AF9 oncoprotein from chromatin globally.


Leukemia , Myeloid-Lymphoid Leukemia Protein , Chromatin/genetics , Humans , Leukemia/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/genetics , Transcription Factors/genetics
20.
Mol Neurodegener ; 17(1): 17, 2022 03 02.
Article En | MEDLINE | ID: mdl-35236372

Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. Extensive clinical and genomic studies have revealed biomarkers, risk factors, pathways, and targets of AD in the past decade. However, the exact molecular basis of AD development and progression remains elusive. The emerging single-cell sequencing technology can potentially provide cell-level insights into the disease. Here we systematically review the state-of-the-art bioinformatics approaches to analyze single-cell sequencing data and their applications to AD in 14 major directions, including 1) quality control and normalization, 2) dimension reduction and feature extraction, 3) cell clustering analysis, 4) cell type inference and annotation, 5) differential expression, 6) trajectory inference, 7) copy number variation analysis, 8) integration of single-cell multi-omics, 9) epigenomic analysis, 10) gene network inference, 11) prioritization of cell subpopulations, 12) integrative analysis of human and mouse sc-RNA-seq data, 13) spatial transcriptomics, and 14) comparison of single cell AD mouse model studies and single cell human AD studies. We also address challenges in using human postmortem and mouse tissues and outline future developments in single cell sequencing data analysis. Importantly, we have implemented our recommended workflow for each major analytic direction and applied them to a large single nucleus RNA-sequencing (snRNA-seq) dataset in AD. Key analytic results are reported while the scripts and the data are shared with the research community through  GitHub. In summary, this comprehensive review provides insights into various approaches to analyze single cell sequencing data and offers specific guidelines for study design and a variety of analytic directions. The review and the accompanied software tools will serve as a valuable resource for studying cellular and molecular mechanisms of AD, other diseases, or biological systems at the single cell level.


Alzheimer Disease , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Computational Biology , DNA Copy Number Variations , Data Analysis , Mice , Single-Cell Analysis/methods
...