Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Exp Neurol ; : 114862, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38866103

Neuroinflammation is a common pathological feature and onset in multiple cognitive disorders, including postoperative cognitive dysfunction (POCD). Iron deposition was proved to participate in this process. But how iron mediates inflammation-induced cognitive deficits remains unknown. This study aimed to investigate the mechanism of iron through the neuroprotective effect of the iron chelator deferoxamine (DFO) in a mouse model of lipopolysaccharide (LPS)-induced cognitive impairment. Adult C57BL/6 mice were pretreated with 0.5 µg of DFO three days before intracerebroventricular microinjection of 2 µg of LPS. The mice showed memory deficits by showing decreased percentage of distance and the time within the platform-site quadrant, fewer platform-site crossings, and shortened swimming distance around the platform in the Morris water maze test, which were significantly mitigated by DFO pretreatment. Mechanistically, DFO prevented LPS-induced iron accumulation and modulated the imbalance of proteins expression related to iron metabolism, including elevated transferrin (TF) levels and reduced ferritin (Fth) caused by LPS. DFO attenuated the LPS-induced lipid peroxidation and oxidative stress, which is evidenced by the increase of malondialdehyde (MDA) and lipid peroxidation (LPO) levels and the decrease of superoxide dismutase (SOD) activity and glutathione (GSH) concentration. Moreover, DFO ameliorated ferroptosis-like mitochondrial damages in the hippocampus and also alleviated the expression of ferroptosis-related proteins in the hippocampus. Additionally, DFO attenuated microglial activation, alleviated LPS-induced inflammation, and reduced elevated levels of IL-6 and TNF-α in the hippocampus. Taken together, our findings suggested that DFO exerts neuroprotective effects by alleviating excessive iron participation in lipid peroxidation, reducing the occurrence of ferroptosis, inhibiting the vicious cycle between oxidative stress and inflammation, and ultimately ameliorating LPS-induced cognitive dysfunction, providing novel insights into the immunopathogenesis of inflammation-related cognitive dysfunction and future potential prevention options targeting iron.

2.
Int J Biol Macromol ; 272(Pt 1): 132846, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38834111

Skin is the first barrier of body which stands guard for defending aggressive pathogens and environmental pressures all the time. Cutaneous metabolism changes in harmful exposure, following with skin dysfunctions and diseases. Lots of researches have reported that polysaccharides extracted from seaweeds exhibited multidimensional bioactivities in dealing with skin disorder. However, few literature systematically reviews them. The aim of the present paper is to summarize structure, bioactivities and structure-function relationship of algal polysaccharides acting on skin. Algal polysaccharides show antioxidant, immunomodulating, hydration regulating, anti-melanogenesis and extracellular matrix (ECM) regulating abilities via multipath ways in skin. These bioactivities are determined by various parameters, including seaweed species, molecular weight, monosaccharides composition and substitute groups. In addition, potential usages of algae-derived polysaccharides in skin care and therapy are also elaborated. Algal polysaccharides are potential ingredients in formulation that providing anti-aging efficacy for skin.

3.
Org Lett ; 26(9): 1914-1919, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38420924

A catalytic kinetic resolution of sulfoximines has been developed through chiral phosphoric acid-catalyzed intramolecular dehydrative cyclizations. A variety of racemic sulfoximines bearing an ortho-amidophenyl moiety underwent asymmetric dehydrative cyclizations using this method, yielding both the recovered sulfoximines and benzothiadiazine-1-oxide products with good to high enantioselectivities (with s-factor up to 61). The diverse derivatizations of the chiral products into a wide range of S-stereogenic center-containing S,N-heterocycles have demonstrated the value of this method.

4.
Talanta ; 270: 125649, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38215584

Herein we developed a cascade detection mode for the detection of HS- and ClO- by the novel probe NM-Cl bearing a conjugating naphthalene-dicyanoisophorone unit. The probe displayed sensitive and remarkable fluorescent enhancement in response to HS-, but not to other analytes. The mixture of probe and HS- constructed a specific sensing system for ClO- by fluorescent quenching response. The mechanism studies indicated that the successive reacting of HS- substitution Cl atom in probe and then addition of ClO- facilitation a thiofuran ring-forming induced differentiated fluorescence emission. This study provides a novel mechanism for the detection of HS- and ClO-, the imaging of cell and living animal further indicating the good application prospects of the probe in biosensing and bioimaging.


Fluorescent Dyes , Hydrogen Sulfide , Animals , Humans , Hypochlorous Acid , Optical Imaging , HeLa Cells
5.
Chemosphere ; 349: 140850, 2024 Feb.
Article En | MEDLINE | ID: mdl-38043615

Interactions between silicate bacteria and silicates are very common in nature and hold great potential in altering their mutual physicochemical properties. But their interactions in regulating contaminants remediation involving performance and mechanisms are often overlooked. Here, we focused on the interactions between silicate bacteria (Paenibacillus polymyxa, PP; Bacillus circulans, BC) and a soil silicate montmorillonite (Mt), and their impact on Cd(II) immobilization. The obtained results showed that Mt greatly promoted the growth of the bacteria, resulting in a maximum 10.31 times increase in biomass production. In return, the bacteria strongly enhanced the Cd(II) adsorption on Mt, with adsorption capacities increased by 80.61%-104.45% in comparison to the raw Mt. Additionally, the bacteria-Mt interaction changed Cd(II) to a more stabilized state with a maximum reduction of 38.90%/g Mt in bioavailability. The enhancement of Cd(II) adsorption and immobilization on the bacterial modified Mt was caused by the following aspects: (1) the bacteria activities altered the aggregation state of Mt and made it better dispersed, thus more active sites were exposed; (2) the microbial activities brought about more rough and crumpled surface, as well as smaller Mt fragments; (3) a variety of microbial-derived functional groups were introduced onto the Mt surface, increasing its affinity for heavy metals; (4) the main Cd(II) immobilization mechanism was changed from ion exchange to the combination of ion exchange and functional groups induced adsorption. This work elucidates the potential ecological and evolutionary processes of silicate bacteria-soil clay mineral interactions, and bears direct implications for the clay-mediated bioremediation of heavy metals in natural environments.


Metals, Heavy , Soil Pollutants , Bentonite/chemistry , Cadmium/chemistry , Clay , Soil/chemistry , Bacteria , Soil Pollutants/analysis , Adsorption
6.
Fitoterapia ; 172: 105760, 2024 Jan.
Article En | MEDLINE | ID: mdl-38030097

Polysaccharides primarily composed of glucose, arabinose, rhamnose, xylose, and galactose are pharmacologically active ingredients in Lilium. The pharmacological activities shown by polysaccharides from Lilium include antioxidant, anti-tumor, immunomodulatory, hypoglycemic, bacteriostatic, and radiation protection effects. This review provides a comprehensive summary of the distribution of Lilium medicinal resources in China, current extraction and purification methods of Lilium polysaccharide (LP), the strategies used for analyzing the polysaccharide structure and monosaccharide composition in LP, and the pharmacological activities and structural modification of LP. This review provides a basis for the development and clinical application of LP along with the conservation and utilization of Lilium resources.


Lilium , Lilium/chemistry , Molecular Structure , Monosaccharides/chemistry , Antioxidants/pharmacology , Polysaccharides/pharmacology , Polysaccharides/chemistry
7.
Inorg Chem ; 62(34): 13857-13866, 2023 Aug 28.
Article En | MEDLINE | ID: mdl-37590466

Layered double hydroxides (LDHs) have been considered important sinks for ionic contaminants in nature and effectively engineered adsorbents for environmental remediation. The availability of interlayer active sites of LDHs is critical for their adsorptive ability. However, inorganic LDHs generally have a nano-confined interlayer space of ca. 0.3-0.5 nm, and it is unclear how LDHs can utilize their interlayer active sites during the adsorption process. Thus, LDHs intercalated with SO42-, PO43-, NO3-, Cl-, or CO32- were taken as examples to reveal this unsolved problem during Cd2+ adsorption. New adsorption behaviors and pronounced differences in adsorption performance were observed. Specifically, SO42-/PO43- intercalated LDHs showed a maximum Cd2+ adsorption capacity of 19.2/9.8 times higher than other LDHs. The ligand exchange of H+ (on the surface -OH) by Cd2+ and formation of Cd-SO42-/PO43- complexes led to the efficient removal of Cd2+. Interestingly, interlayer SO42- was demonstrated to be able to move to the edges/outer surfaces of LDHs, providing abundant movable adsorption sites for Cd2+. This novel phenomenon made the SO42- intercalated LDH a superior adsorbent for Cd2+ among the tested LDHs, which also suggests that LDHs with a nano-confined interlayer space can also highly utilize their interlayer active sites based on the mobility of interlayer anions, offering a new method for constructing superior LDH adsorbents.

8.
Metabolites ; 13(6)2023 May 31.
Article En | MEDLINE | ID: mdl-37367872

Most studies on metabolites in jujube fruits focus on specific types of metabolites, but there are only a few comprehensive reports on the metabolites in jujube fruits. In order to understand the variance of metabolites in fruits of different jujube varieties. The objective of this study was to explore the metabolic components of jujube fruit by comparing three cultivars, namely Linyi LiZao (LZ), Jiaocheng SuantianZao (STZ), and Xianxian Muzao (MZ). The metabolites present in the fruits of these three cultivars were evaluated and compared. The results revealed the detection of 1059 metabolites across the three jujube varieties, with each cultivar exhibiting distinct metabolic characteristics. Notably, MZ exhibited a higher abundance of six metabolite classes, namely amino acids and derivatives, flavonoids, lipids, organic acids, phenolic acids, and terpenoids, compared to LZ. Conversely, LZ exhibited higher concentrations of alkaloids, lignans, coumarins, nucleotides, and their derivatives compared to the other two cultivars. In terms of STZ, its content of amino acids and derivatives, lignans and coumarins, organic acids, and phenolic acids was largely similar to that of LZ. However, the content of alkaloids, nucleotides, and their derivatives, and terpenoids was significantly higher in STZ compared to LZ. Additionally, STZ exhibited lower levels of flavonoids and lipids compared to LZ. Moreover, MZ was found to be less nutritionally rich than STZ, except for lignans and coumarins, as it displayed lower levels of all the metabolites. KEGG pathway enrichment analysis revealed six significantly different metabolic pathways (p < 0.05) between LZ and MZ, including arginine and proline metabolism, sphingolipid metabolism, flavonoid biosynthesis, glutathione metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism. The metabolites in STZ and MZ exhibited three significantly different pathways (p < 0.05), primarily associated with flavonoid biosynthesis, arginine and proline metabolism, and sphingolipid metabolism. The significantly differential metabolites between LZ and STZ were observed in the phenylpropionic acid biosynthesis pathway and the ubiquinone and other terpenoid-quinone biosynthesis pathways. LZ showed a closer relationship with STZ than with MZ. STZ and LZ exhibited higher medicinal values, while LZ had lower acidity and MZ displayed better antioxidant activity. This study presents the first thorough analysis of metabolites in LZ, STZ, and MZ cultivars, which can serve as a theoretical basis for quality analysis, functional research, and classification processing of jujube fruit.

9.
Therap Adv Gastroenterol ; 15: 17562848221123980, 2022.
Article En | MEDLINE | ID: mdl-36171810

Background: Oral microbiota reported to be associated with pancreatic diseases, including pancreatic cancer. However, the association of oral microbiome and pancreatic cancer has not been reviewed systematically. Objectives: To systematically investigate the association between the oral microbiome and pancreatic cancer risk. Design: A systematic review and meta-analysis. Data Sources and Methods: Systemic searches were conducted using PubMed, Medline, Cochrane Library, and Embase databases without any language restriction from conception to August 29, 2020. The studies that evaluated the association of oral microbiome and pancreatic cancer risk were included in this meta-analysis. Results: The six included studies encompassed a total of 863 pancreatic cancer cases and 906 controls. Four studies reported the overall oral microbiome in pancreatic cancer cases. A total of 12-17 species/clusters were correlated with pancreatic cancer. Three studies reported the odds ratios (ORs) or relative abundance of several oral microbiomes pieces/clusters, and the majority were associated with pancreatic cancer. Conclusions: Overall, this study supports the hypothesis of associations of variations of patients' oral microbiota to pancreatic cancer. Nonetheless, due to all included studies were conducted in USA or Europe, additional original studies and meta-analysis particular studies from other countries are essential for an in-depth investigation into the role of oral bacteria in pancreatic cancer.

10.
iScience ; 23(9): 101484, 2020 Sep 25.
Article En | MEDLINE | ID: mdl-32927261

We use 36 years (1980-2015) of hourly weather data over the contiguous United States (CONUS) to assess the impact of low-cost energy storage on highly reliable electricity systems that use only variable renewable energy (VRE; wind and solar photovoltaics). Even assuming perfect transmission of wind and solar generation aggregated over CONUS, energy storage costs would need to decrease several hundred-fold from current costs (to ∼$1/kWh) in fully VRE electricity systems to yield highly reliable electricity without extensive curtailment of VRE generation. The role of energy storage changes from high-cost storage competing with curtailment to fill short-term gaps between VRE generation and hourly demand to near-free storage serving as seasonal storage for VRE resources. Energy storage faces "double penalties" in VRE/storage systems: with increasing capacity, (1) the additional storage is used less frequently and (2) hourly electricity costs would become less volatile, thus reducing price arbitrage opportunities for the additional storage.

11.
Environ Sci Technol ; 54(12): 7542-7551, 2020 06 16.
Article En | MEDLINE | ID: mdl-32412237

Negative emissions technologies will play an important role in preventing 2 °C warming by 2100. The next decade is critical for technological innovation and deployment to meet mid-century carbon removal goals of 10-20 GtCO2/yr. Direct air capture (DAC) is positioned to play a critical role in carbon removal, yet remains under paced in deployment efforts, mainly because of high costs. This study outlines a roadmap for DAC cost reductions through the exploitation of low-temperature heat, recent U.S. policy drivers, and logical, regional end-use opportunities in the United States. Specifically, two scenarios are identified that allow for the production of compressed high-purity CO2 for costs ≤$300/tCO2, net delivered with an opportunity to scale to 19 MtCO2/yr. These scenarios use thermal energy from geothermal and nuclear power plants to produce steam and transport the purified CO2 via trucks to the nearest opportunity for direct use or subsurface permanent storage. Although some utilization pathways result in the re-emission of CO2 and cannot be considered true carbon removal, they would provide economic incentive to deploying DAC plants at scale by mid-century. In addition, the federal tax credit 45Q was applied for qualifying facilities (i.e., producing ≥100 ktCO2/yr).


Carbon Dioxide , Carbon , Carbon Dioxide/analysis , Carbon Sequestration , Costs and Cost Analysis , Hot Temperature , United States
12.
Environ Sci Technol ; 51(19): 11459-11467, 2017 Oct 03.
Article En | MEDLINE | ID: mdl-28910081

Vanadium and its surface oxides were studied as a potential nitrogen-selective membrane material for indirect carbon capture from coal or natural gas power plants. The effects of minor flue gas components (SO2, NO, NO2, H2O, and O2) on vanadium at 500-600 °C were investigated by thermochemical exposure in combination with X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and in situ X-ray diffraction (XRD). The results showed that SO2, NO, and NO2 are unlikely to have adsorbed on the surface vanadium oxides at 600 °C after exposure for up to 10 h, although NO and NO2 may have exhibited oxidizing effects (e.g., exposure to 250 ppmv NO/N2 resulted in an 2.4 times increase in surface V2O5 compared to exposure to just N2). We hypothesize that decomposition of surface vanadium oxides and diffusion of surface oxygen into the metal bulk are both important mechanisms affecting the composition and morphology of the vanadium membrane. The results and hypothesis suggest that the carbon capture performance of the vanadium membrane can potentially be strengthened by material and process improvements such as alloying, operating temperature reduction, and flue gas treatment.


Carbon Sequestration , Vanadium , Carbon , Coal , Power Plants , X-Ray Diffraction
...