Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Adv Mater ; 36(7): e2310237, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009650

RESUMEN

The experimental replicability of highly efficient perovskite solar cells (PSCs) is a persistent challenge faced by laboratories worldwide. Although trace impurities in raw materials can impact the experimental reproducibility of high-performance PSCs, the in situ study of how trace impurities affect perovskite film growth is never investigated. Here, light is shed on the impact of inevitable water contamination in lead iodide (PbI2 ) on the replicability of device performance, mainly depending on the synthesis methods of PbI2 . Through synchrotron-based structure characterization, it is uncovered that even slight additions of water to PbI2 accelerate the crystallization process in the perovskite layer during annealing. However, this accelerated crystallization also results in an imbalance of charge-carrier mobilities, leading to a degradation in device performance and reduced longevity of the solar cells. It is also found that anhydrous PbI2 promotes a homogenous nucleation process and improves perovskite film growth. Finally, the PSCs achieve a remarkable certified power conversion efficiency of 24.3%. This breakthrough demonstrates the significance of understanding and precisely managing the water content in PbI2 to ensure the experimental replicability of high-efficiency PSCs.

3.
Eur J Med Chem ; 226: 113825, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34562854

RESUMEN

Histone deacetylases (HDACs) play an important role in regulating the expression of genes involved in tumorigenesis and tumor maintenance, and hence they have been considered as key targets in cancer therapy. As a novel category of antitumor agents, histone deacetylase inhibitors (HDACis) can induce cell cycle arrest, apoptosis, and differentiation in cancer cells, ultimately combating cancer. Although in the United States, the use of HDACis for the treatment of certain cancers has been approved, the therapeutic efficacy of HDACis as a single therapeutic agent in solid tumorshas been unsatisfactory and drug resistance may yet occur. To enhance therapeutic efficacy and limit drug resistance, numerous combination therapies involving HDACis in synergy with other antitumor therapies have been studied. In this review, we describe the classification of HDACs. Moreover, we summarize the antitumor mechanism of the HDACis for targeting key cellular processes of cancers (cell cycle, apoptosis, angiogenesis, DNA repair, and immune response). In addition, we outline the major developments of other antitumor therapies in combination with HDACis, including chemotherapy, radiotherapy, phototherapy, targeted therapy, and immunotherapy. Finally, we discuss the current state and challenges of HDACis-drugs combinations in future clinical studies, with the aim of optimizing the antitumor effect of such combinations.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas/química , Humanos , Estructura Molecular
4.
Biomed Mater ; 16(4)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33882463

RESUMEN

Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT), as non-invasive therapy approaches, have gained accumulated attention for cancer treatment in past years. PTT and PDT can generate local hyperthermia effects and reactive oxygen species (ROS) respectively, for tumor eradication. To improve the therapeutic performance while minimizing the reverse side effects of phototherapy, extensive efforts have been devoted to developing stimuli-activatable (e.g. pH, redox, ROS, enzyme, etc) nanomaterials for tumor-specific delivery/activation of the phototherapeutics. In this review, we first overviewed the recent advances of the engineered stimuli-responsive nanovectors for the phototherapy of cancer. We particularly summarized the progress of stimuli-activatable nanomaterials-based combinatory therapy strategies for augmenting the performance of phototherapy. We further discuss challenges for the clinical translation of nanomaterials-based phototherapy.


Asunto(s)
Antineoplásicos , Nanoestructuras , Neoplasias , Fototerapia , Nanomedicina Teranóstica , Animales , Humanos , Ratones , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...