Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Microbiome ; 19(1): 61, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39182153

RESUMEN

BACKGROUND: Continuous monocropping obstacles are common in plants, especially medicinal plants, resulting in disease outbreaks and productivity reductions. Foliar disease, mainly caused by Fusarium oxysporum, results in a severe decrease in the yield of Pseudostellaria heterophylla annually. Determining an effective biomethod to alleviate this disease is urgently needed to improve its productivity and quality. RESULTS: This study screened thirty-two keystone bacterial genera induced by pathogens in P. heterophylla rhizosphere soil under continuous monocropping conditions. Pseudomonas, Chryseobacterium, and Flavobacterium, referred to as the beneficial microbiota, were significantly attracted by pathogen infection. The P. palleroniana strain B-BH16-1 can directly inhibit the growth and spore formation of seven primary pathogens of P. heterophylla foliar disease by disrupting fusaric acid production via the emission of volatile organic compounds (VOCs). In addition, strain B-BH16-1 enhances the disease resistance of P. heterophylla by obliterating the pathogen and assembling beneficial microbiota. CONCLUSION: Pathogen-induced Pseudomonas reshaped phyllosphere microbial communities via direct antagonism of pathogens and indirect disruption of the pathogen virulence factor biosynthesis to enhance disease suppression and improve yields. These results show that inhibiting pathogen virulence biosynthesis to reshape the plant microbial community using disease-induing probiotics will be an innovative strategy for managing plant disease, especially under continuous monoculture conditions.

2.
Plant Dis ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319631

RESUMEN

Epimedium sagittatum is a collective term for herbaceous plants belonging to the family Berberidaceae. Their dried leaves and stems have significant therapeutic effects on tumor inhibition, hypertension control, and coronary heart disease (Ke et al. 2023; Zhao et al. 2019). In 2021 and 2022, plants with similar leaf rot symptoms ranging from 30% to 55% was observed on E. sagittatum in Congjiang County, Guizhou province. The initial symptoms of the disease manifest locally on the leaf, with yellowing on the surface edge of the affected tissue, browning in the middle part, and brown-white discoloration in the innermost part (Supplementary Figure S1B). As the disease progresses, the entire infected leaf gradually softens, while the veins remain intact (Supplementary Figure S1C). Ultimately, the leaf withers and dehisces. The nine samples with typical symptoms were collected from Congjiang County, Guizhou province (26.598°N, 106.707°E). Twenty-seven fungi were isolated, including ten isolates of Rhizopus and seventeen isolates of seven other genera. On isolate YYH-CJ-17 many sporangia were formed and turned to a brown-gray to black color on potato dextrose agar medium (PDA) after culturing 5 days under dark at 25 ℃ (Supplementary Figure S2A and S2B). The branches of mycelium were finger-shaped or root-shaped. The sporangium was spherical or nearly spherical, 60-250 µm in diameter, and sporangiospores were elliptical or spherical and 4-8 µm in diameter. The obtained 547 bp ITS fragment (accession OR225970) and 1231 bp EF-1α region (accession OR242258) from isolate YYH-CJ-17 were compared with NR database using the BLAST tool provided by NCBI, which revealed more than 99.5% identity (query cover more than 98%) with the sequences of ITS (accessions MF522822.1) and EF-1α (accession AB281541.1) of Rhizopus oryzae Went & H.C. Prinsen Geerlings (Gao et al. 2022; Zhang et al. 2022). The phylogenetic tree constructed with the ITS and EF-1α gene sequences demonstrates that strain YYH-CJ-17 clusters with R. oryzae in the same branch and the bootstrap value was greater than 99% (Supplementary Figure S3). Based on the morphological characteristics and ITS and EF-1a sequences, the isolate YYH-CJ-17 is identified as R. oryzae. Pathogenicity tests were performed on detached healthy leaves and living plants of E. sagittatum. Healthy leaves of E. sagittatum were subjected to inoculation with isolate YYH-CJ-17 with 5 × 105 CFU mL-1 concentration in sterile culture dishes. The progression of the disease was marked by the gradual softening of the infected leaves and the expansion of the lesions, which ultimately produced black-brown sporangium (Supplementary Figure S4A). Furthermore, the E. sagittatum living plants were sprayed with 5 × 105 CFU mL-1 conidial suspension of isolate YYH-CJ-17, with ddH2O as a negative control, and then were cultivated at 25℃ and 90% humidity for 21 days in the greenhouse. This assay found that the E. sagittatum leaves treated with isolate YYH-CJ-17 exhibited the same symptoms observed on plants in fields (Supplementary Figure S4B). The fungus re-isolated from the inoculated leaves were identified as R. oryzae by ITS sequencing and were blasted with NR database, which highest matched with the sequence of ITS (accessions MF522822.1) mentioned above, thus fulfilling Koch's postulates. R. oryzae has been identified as a causative agent of a diverse array of host diseases, including leaf mildew of tobacco, fruit rot of yellow oleander and pears, and soft rot of bananas (Farooq et al. 2017; Khokhar et al. 2019; Kwon et al. 2012; Pan et al. 2021). To the best of our knowledge, this is the first report of leaf rot on E. sagittatum caused by R. oryzae in China, which will provide clear prevention and management target for the leaf rot disease of E. sagittatum.

3.
Toxins (Basel) ; 15(12)2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38133178

RESUMEN

Zearalenone (ZEN) is a mycotoxin produced by Fusarium spp., which commonly and severely contaminate food/feed. ZEN severely affects food/feed safety and reduces economic losses owing to its carcinogenicity, genotoxicity, reproductive toxicity, endocrine effects, and immunotoxicity. To explore efficient methods to detoxify ZEN, we identified and characterized an efficient ZEN-detoxifying microbiota from the culturable microbiome of Pseudostellaria heterophylla rhizosphere soil, designated Bacillus amyloliquefaciens D-1. Its highest ZEN degradation rate reached 96.13% under the optimal condition. And, D-1 can almost completely remove ZEN (90 µg·g-1) from coix semen in 24 h. Then, the D-1 strain can detoxify ZEN to ZEM, which is a new structural metabolite, through hydrolyzation and decarboxylation at the ester group in the lactone ring and amino acid esterification at C2 and C4 hydroxy. Notably, ZEM has reduced the impact on viability, and the damage of cell membrane and nucleus DNA and can significantly decrease the cell apoptosis in the HepG2 cell and TM4 cell. In addition, it was found that the D-1 strain has no adverse effect on the HepG2 and TM4 cells. Our findings can provide an efficient microbial resource and a reliable reference strategy for the biological detoxification of ZEN.


Asunto(s)
Bacillus amyloliquefaciens , Coix , Probióticos , Zearalenona , Zearalenona/análisis , Bacillus amyloliquefaciens/metabolismo , Coix/metabolismo , Semillas/química
4.
Curr Microbiol ; 80(9): 298, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490157

RESUMEN

The foliar disease, which is the primary complex disease of Pseudostellaria heterophylla, can be caused by multiple co-infecting pathogens, resulting in a significant reduction in yield. However, there is a lack of research on the relationship between co-infection of various pathogens and the response of resistance-related genes in P. heterophylla. Through the use of 18S rDNA sequencing and pathogenicity testing, it has been determined that Fusarium oxysporum, Alternaria alternata, Arcopilus aureus, Botrytis cinerea, Nemania diffusa, Whalleya microplaca, and Cladosporium cladosporioides are co-infecting pathogens responsible for foliar diseases in P. heterophylla. Furthermore, the qRT-PCR analysis revealed that F. oxysporum, A. alternata, B. cinerea, A. aureus, N. diffusa, Schizophyllum commune, C. cladosporioides, and Coprinellus xanthothrix upregulated ten, two, three, four, seven, thirteen, five, one, and six resistance-related genes, respectively. These findings suggest that a total of 22 resistance-related genes were implicated in the response to diverse fungi, and the magnitude and frequency of induction of resistance-related genes varied considerably among the different fungi. The aforementioned gene associated with resistance was found to be implicated in the response to multiple fungi, including PhPRP1, PhBDRN15, PhBDRN11, and PhBDRN3, which were found to be involved in the resistance response to nine, five, four, and four fungi, respectively. The findings indicate that the PhPRP1, PhBDRN15, PhBDRN11, and PhBDRN3 genes exhibit a broad-spectrum resistance to various fungi. Furthermore, the avirulence fungi C. xanthothrix, which is known to affect P. heterophylla, was found to prime a wide range of resistance responses in P. heterophylla, thereby enhancing its disease resistance. This study provided insight into the management strategies for foliar diseases of P. heterophylla and new genetic materials for disease-resistant breeding.


Asunto(s)
Coinfección , Humanos , ADN Ribosómico , Resistencia a la Enfermedad
5.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1851-1857, 2023 Apr.
Artículo en Chino | MEDLINE | ID: mdl-37282960

RESUMEN

This paper aimed to study the role of asparagine endopeptidase(AEP) gene in the biosynthesis mechanism of cyclic peptide compounds in Pseudostellaria heterophylla. The transcriptome database of P. heterophylla was systematically mined and screened, and an AEP gene, tentatively named PhAEP, was successfully cloned. The heterologous function verification by Nicotiana benthamiana showed that the expression of the gene played a role in the biosynthesis of heterophyllin A in P. heterophylla. Bioinformatics analysis showed that the cDNA of PhAEP was 1 488 bp in length, encoding 495 amino acids with a molecular weight of 54.72 kDa. The phylogenetic tree showed that the amino acid sequence encoded by PhAEP was highly similar to that of Butelase-1 in Clitoria ternatea, reaching 80%. The sequence homology and cyclase active site analysis revealed that the PhAEP enzyme may specifically hydrolyse the C-terminal Asn/Asp(Asx) site of the core peptide in the HA linear precursor peptide of P. heterophylla, thereby participating in the ring formation of the linear precursor peptide. The results of real-time quantitative polymerase chain reaction(RT-qPCR) showed that the expression level of PhAEP was the highest in fruits, followed by in roots, and the lowest in leaves. The heterophyllin A of P. heterophylla was detected in N. benthamiana that co-expressed PrePhHA and PhAEP genes instantaneously. In this study, the PhAEP gene, a key enzyme in the biosynthesis of heterophyllin A in P. heterophylla, has been successfully cloned, which lays a foundation for further analysis of the molecular mechanism of PhAEP enzyme in the biosynthesis of heterophyllin A in P. heterophylla and has important significance for the study of synthetic biology of cyclic peptide compounds in P. heterophylla.


Asunto(s)
Caryophyllaceae , Genes vif , Filogenia , Hojas de la Planta/genética , Péptidos Cíclicos , Clonación Molecular , Caryophyllaceae/genética
6.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1491-1497, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005836

RESUMEN

By investigating the contamination status and predicting the exposure risk of mycotoxin in Coicis Semen, we aim to provide guidance for the safety supervision of Chinese medicinal materials and the formulation(revision) of mycotoxin limit standards. The content of 14 mycotoxins in the 100 Coicis Semen samples collected from five major markets of Chinese medicinal materials in China was determined by UPLC-MS/MS. The probability evaluation model based on Monte Carlo simulation method was established after Chi-square test and One-way ANOVA of the sample contamination data. Health risk assessment was performed on the basis of margin of exposure(MOE) and margin of safety(MOS). The results showed that zearalenone(ZEN), aflatoxin B_1(AFB_1), deoxynivalenol(DON), sterigmatocystin(ST), and aflatoxin B_2(AFB_2) in the Coicis Semen samples had the detection rates of 84%, 75%, 36%, 19%, and 18%, and the mean contamination levels of 117.42, 4.78, 61.16, 6.61, and 2.13 µg·kg~(-1), respectively. According to the limit standards in the Chinese Pharmacopoeia(2020 edition), AFB_1, AFs and ZEN exceeded the standards to certain extents, with the over-standard rates of 12.0%, 9.0%, and 6.0%, respectively. The exposure risks of Coicis Semen to AFB_1, AFB2, ST, DON, and ZEN were low, while 86% of the samples were contaminated with two or more toxins, which needs more attention. It is suggested that the research on the combined toxicity of different mycotoxins should be strengthened to accelerate the cumulative exposure assessment of mixed contaminations and the formulation(revision) of toxin limit standards.


Asunto(s)
Coix , Micotoxinas , Humanos , Micotoxinas/análisis , Aflatoxina B1/análisis , Cromatografía Liquida/métodos , Contaminación de Alimentos/análisis , Espectrometría de Masas en Tándem/métodos
7.
Toxins (Basel) ; 15(1)2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36668896

RESUMEN

Semen coicis is not only a traditional Chinese medicine (TCM), but also a typical food in China, with significant medical and healthcare value. Because semen coicis is rich in starch and oil, it can be easily contaminated with Aspergillus flavus and its aflatoxins (AFs). Preventing and controlling the contamination of semen coicis with Aspergillus flavus and its aflatoxins is vital to ensuring its safety as a drug and as a food. In this study, the endosphere bacteria Pseudomonas palleroniana strain B-BH16-1 produced volatiles that strongly inhibited the mycelial growth and spore formation activity of A. flavus. Gas chromatography-mass spectrometry profiling revealed three volatiles emitted from B-BH16-1, of which 1-undecene was the most abundant. We obtained authentic reference standards for these three volatiles; these significantly reduced mycelial growth and sporulation in Aspergillus, with dimethyl disulfide showing the most robust inhibitory activity. Strain B-BH16-1 was able to completely inhibit the biosynthesis of aflatoxins in semen coicis samples during storage by emitting volatile bioactive components. The microscope revealed severely damaged mycelia and a complete lack of sporulation. This newly identified plant endophyte bacterium was able to strongly inhibit the sporulation and growth of Aspergillus and the synthesis of associated mycotoxins, thus not only providing valuable information regarding an efficient potential strategy for the prevention of A. flavus contamination in TCM and food, but potentially also serving as a reference in the control of toxic fungi.


Asunto(s)
Aflatoxinas , Coix , Aspergillus flavus , Aflatoxinas/análisis , Pseudomonas , Aspergillus
8.
Mol Plant Microbe Interact ; 35(12): 1124-1126, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36508486

RESUMEN

Acinetobacter schindleri is an endophyte of Pseudostellaria heterophylla, a traditional Chinese herbal plant. It has high degradation activity to toxins produced by fungal pathogen Fusarium graminearum. Here, we deployed PacBio single-molecule real-time long-read sequencing technology to generate a complete genome assembly for the Acinetobacter schindleri H4-3-C1 strain and obtained 1.59 Gb of clean reads. These reads were assembled to a single circular DNA chromosome with a length of 3,265,024 bp, and no plasmid was found in the genome. Totals of 3,193 coding sequences, 91 transfer RNA, 21 ribosomal RNA, and 75 small RNAs were identified in the genome. This high-quality genome assembly and gene annotation resource will facilitate the excavation of the zearalenone degradation gene and provide valuable resources for preventing and controlling toxigenic fungal diseases of P. heterophylla. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Acinetobacter , Endófitos , Anotación de Secuencia Molecular , Acinetobacter/genética , Plásmidos , Enfermedades de las Plantas/microbiología , Genoma Fúngico
9.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2277-2280, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531672

RESUMEN

Due to the special biological characteristics, Gastrodia elata suffers from high resource consumption and low utilization rate in modern agricultural production, which significantly block the green and healthy development of this industry. Based on the theory and technology in ecological cultivation of Chinese medicinal materials, this study analyzed the challenges in ecological cultivation of G. elata, such as waste of fungus material, a few cultivation modes available, continuous cropping obstacles, frequent occurrence of diseases, and poor stability of ecological structure. According to the production practice, the following suggestions were proposed for ecological cultivation of G. elata: following the principle of environmental protection and no pollution, selecting suitable habitats to yield high-quality medicinal materials, committing to green control of diseases and pests, upgrading industrial structure to maximize the benefits, establishing a sound mechanism for protecting the genetic diversity of wild G. elata, carrying out simulative habitat cultivation to improve medicinal material quality, adopting science-based planning of fungus resources to relieve forestry pressure, enhancing the recycling and utilization of fungus materials, and applying diversified cultivation modes to improve the stability of ecological structure. The result is expected to provide a reference for the quality development of G. elata industry.


Asunto(s)
Gastrodia , Plantas Medicinales , Agricultura , Gastrodia/química , Plantas Medicinales/química
10.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2288-2295, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531674

RESUMEN

Brown rot is a common disease in the cultivation and production of Gastrodia elata, but its pathogens have not been fully revealed. In this study, the pathogenic fungi were isolated and purified from tubers of 77 G. elata samples with brown rot. Pathogens were identified by the pathogenicity test and morphological and molecular identification. The pathogenicity of each pathogen and its inhibitory effects on Armillaria gallica were compared. The results showed that 119 strains of fungi were isolated from tubers of G. elata infected with brown rot. Among them, the frequency of separation of Ilyonectria fungi was as high as 42.01%. The pathogenicity test showed that the pathogenicity characteristics of six strains of fungi were consistent with the natural symptoms of brown rot in G. elata. The morphological and molecular identification results showed that the six strains belonged to I. cyclaminicola and I. robusta in the Nectriaceae family of Sordariomycetes class, respectively. Both types of fungi could produce pigments, conidia, and chlamycospore, and the growth rate of I. cyclaminicola was significantly higher than that of I. robusta. The comparison of pathogenicity showed that the spots formed by I. cyclaminicola inoculation were significantly larger than those of I. robusta inoculation, suggesting I. cyclaminicola was superior to I. robusta in pathogenicity. The results of confrontation culture showed that I. cyclaminicola and I. robusta could signi-ficantly inhibit the germination and cordage growth of A. gallica. A. gallica also inhibited the growth of pathogens, and I. cyclaminicola was less inhibited as compared with I. robusta. The results of this study revealed for the first time that I. cyclaminicola and I. robusta were the pathogens responsible for G. elata brown rot.


Asunto(s)
Gastrodia , Hongos , Tubérculos de la Planta , Esporas Fúngicas , Virulencia
11.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2281-2287, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531673

RESUMEN

Tuber rot has become a serious problem in the large-scale cultivation of Gastrodia elata. In this study, we compared the resistance of different ecotypes of G. elata to tuber rot by field experiments on the basis of the investigation of G. elata diseases. The histological observation and transcriptome analysis were conducted to reveal the resistance differences and the underlying mechanisms among different ecotypes. In the field, G. elata f. glauca had the highest incidence of tuber rot, followed by G. elata f. viridis, and G. elata f. elata and G. elata f. glauca×G. elata f. elata showed the lowest incidence. Tuber rot showcased obvious plant source specificity and mainly occurred in the buds and bottom of G. elata plants. After infection, the pathogen spread hyphae in host cortex cells, which can change the endophytic fungal community structure in the cortex and parenchyma of G. elata. G. elata f. glauca had thinner lytic layer and more sugar lumps in the parenchyma than G. elata f. elata. The transcription of genes involved in immune defense, enzyme synthesis, polysaccharide synthesis, carbohydrate transport and metabolism, hydroxylase activity, and aromatic compound synthesis had significant differences between G. elata f. glauca and G. elata f. elata. These findings suggested that the differences in resis-tance to tuber rot among different ecotypes of G. elata may be related to the varied gene expression patterns and secondary metabolites. This study provides basic data for the prevention and control of tuber rot and the improvement of planting technology for G. elata.


Asunto(s)
Gastrodia , Ecotipo , Gastrodia/microbiología , Perfilación de la Expresión Génica , Tubérculos de la Planta/genética
12.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2304-2308, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531676

RESUMEN

Mycena, a symbiont of Gastrodia elata, promotes seed germination of G. elata and plays a crucial role in the sexual reproduction of G. elata. However, the lack of genetic transformation system of Mycena blocks the research on the interaction mechanism of the two. In order to establish the protoplast transformation system of Mycena, this study analyzed the protoplast enzymatic hydrolysis system, screened the resistance markers and regeneration medium, and explored the transient transformation. After hydrolysis of Mycena hyphae with complexes enzymes for 8 h and centrifugation at 4 000 r·min~(-1), high-concentration and quality protoplast was obtained. The optimum regeneration medium for Mycena was RMV, and the optimum resistance marker was 50 mg·mL~(-1) hygromycin. The pLH-HygB-HuSHXG-GFP-HdSHXG was transformed into the protoplast of Mycena which then expressed GFP. The established protoplast transformation system of Mycena laid a foundation for analyzing the functional genes of Mycena and the molecular mechanism of the symbiosis of Mycena and G. elata.


Asunto(s)
Agaricales , Gastrodia , Gastrodia/genética , Protoplastos , Simbiosis/genética , Transformación Genética
13.
Front Microbiol ; 13: 842372, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432244

RESUMEN

Fusarium wilt (FW) is a primary replant disease that affects Pseudostellaria heterophylla (Taizishen) and is caused by Fusarium oxysporum, which occurs widely in China under the continuous monocropping regime. However, the ternary interactions among the soil microbiota, P. heterophylla, and F. oxysporum remain unknown. We investigated the potential interaction relationship by which the pathogen-mediated P. heterophylla regulates the soil and the tuberous root microbiota via high-throughput sequencing. Plant-pathogen interaction assays were conducted to measure the arrival of F. oxysporum and Pseudomonas poae at the tuberous root via qPCR and subsequent seedling disease incidence. A growth assay was used to determine the effect of the tuberous root crude exudate inoculated with the pathogen on P. poae. We observed that pathogen-mediated P. heterophylla altered the diversity and the composition of the microbial communities in its rhizosphere soil and tuberous root. Beneficial microbe P. poae and pathogen F. oxysporum were significantly enriched in rhizosphere soil and within the tuberous root in the FW group with high severity. Correlation analysis showed that, accompanied with FW incidence, P. poae co-occurred with F. oxysporum. The aqueous extract of P. heterophylla tuberous root infected by F. oxysporum substantially promoted the growth of P. poae isolates (H1-3-A7, H2-3-B7, H4-3-C1, and N3-3-C4). These results indicated that the extracts from the tuberous root of P. heterophylla inoculated with F. oxysporum might attract P. poae and promote its growth. Furthermore, the colonization assay found that the gene copies of sucD in the P. poae and F. oxysporum treatment (up to 6.57 × 1010) group was significantly higher than those in the P. poae treatment group (3.29 × 1010), and a pathogen-induced attraction assay found that the relative copies of sucD of P. poae in the F. oxysporum treatment were significantly higher than in the H2O treatment. These results showed that F. oxysporum promoted the colonization of P. poae on the tuberous root via F. oxysporum mediation. In addition, the colonization assay found that the disease severity index in the P. poae and F. oxysporum treatment group was significantly lower than that in the F. oxysporum treatment group, and a pathogen-induced attraction assay found that the disease severity index in the F. oxysporum treatment group was significantly higher than that in the H2O treatment group. Together, these results suggest that pathogen-mediated P. heterophylla promoted and assembled plant-beneficial microbes against plant disease. Therefore, deciphering the beneficial associations between pathogen-mediated P. heterophylla and microbes can provide novel insights into the implementation and design of disease management strategies.

14.
Zhongguo Zhong Yao Za Zhi ; 47(3): 628-634, 2022 Feb.
Artículo en Chino | MEDLINE | ID: mdl-35178944

RESUMEN

This study aimed to establish a method for synchronous detection of 14 mycotoxins in Pseudostellariae Radix and investigate its contamination with mycotoxins, so as to provide technical guidance for monitoring the quality of Chinese medicinal materials and medication safety. The sample was extracted with 80% acetonitrile in an oscillator for 1 h, purified using the modified QuEChERS purifying agent(0.1 g PSA + 0.3 g C_(18) + 0.3 g MgSO_4), and separated on a Waters HSS T3 chromatographic column(2.1 mm×100 mm, 1.8 µm). The gradient elution was carried out with 0.1% formic acid in water and acetonitrile, followed by the scanning in the multi-reaction monitoring(MRM) mode and the analysis of mycotoxin contamination in 26 Pseudostellariae Radix samples. The recovery rates of the established method were within the range of 82.17%-113.6%, with the RSD values less than 7% and the limits of quantification(LOQ) being 0.019-0.976 µg·kg~(-1). The detection rate of 14 mycotoxins in 26 batches of medicinal materials was 53.85%. The detection rate of sterigmatocystin(ST) was the highest, followed by those of zearalenone(ZEN), aflatoxin G_2(AFG_2), fumonisin B_1(FB_1), HT-2 toxin, and nivalenol(NIV). Their respective detection rates were 38.46%, 26.92%, 23.08%, 11.54%, 11.54%, and 7.69%, with the pollution ranges being 1.48-69.65, 0.11-31.05, 0.11-0.66, 0.28-0.83, 20.86-42.56, and 0.46-1.84 µg·kg~(-1), respectively. The established method for the detection of 14 mycotoxins is accurate, fast and reliable. The research results have very important practical significance for guiding the monitoring and prevention and control of exogenous fungal contamination of Chinese medicinal materials.


Asunto(s)
Aflatoxinas , Micotoxinas , Aflatoxinas/análisis , Cromatografía Líquida de Alta Presión/métodos , Contaminación de Medicamentos , Contaminación de Alimentos/análisis , Micotoxinas/análisis , Raíces de Plantas/química , Espectrometría de Masas en Tándem/métodos
15.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5792-5796, 2021 Nov.
Artículo en Chino | MEDLINE | ID: mdl-34951166

RESUMEN

Fusarium is the major pathogen of root rot of Pseudostellaria heterophylla. This study aims to explain the possible distribution of Fusarium species and the contamination of its toxin-chemotypes in tuberous root of P. heterophylla. A total of 89 strains of fungi were isolated from the tuberous root of P. heterophylla. Among them, 29 strains were identified as Fusarium by ITS2 sequence, accounting for 32.5%. They were identified as five species of F. avenaceum, F. tricinctum, F. fujikuroi, F. oxysporum, and F. graminearum based on ß-Tubulin and EF-1α genes. LC-MS/MS detected 18, 1, and 5 strains able to produce ZEN, DON, and T2, which accounted for 62.1%, 3.4%, and 17.2%, respectively. Strain JK3-3 can produce ZEN, DON, and T2, while strains BH1-4-1, BH6-5, and BH16-2 can produce ZEN and T2. PCR detected six key synthase genes of Tri1, Tri7, Tri8, Tri13, PKS14, and PKS13 in strain JK3-3, which synthesized three toxins of ZEN, DON, and T2. Four key synthase genes of Tri8, Tri13, PKS14, and PKS13 were detected in strains BH1-4-1, BH6-5, and BH16-2, which were responsible for the synthesis of ZEN and T2. The results showed that the key genes of toxin biosynthesis were highly correlated with the toxins produced by Fusarium, and the biosynthesis of toxin was strictly controlled by the genetic information of the strain. This study provides a data basis for the targeted prevention and control of exo-genous mycotoxins in P. heterophylla and a possibility for the development of PCR for rapid detection of toxin contamination.


Asunto(s)
Caryophyllaceae , Fusarium , Micotoxinas , Cromatografía Liquida , Fusarium/genética , Espectrometría de Masas en Tándem
16.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5240-5246, 2021 Oct.
Artículo en Chino | MEDLINE | ID: mdl-34738425

RESUMEN

Zearalenone(ZEN) is a mycotoxin produced by Fusarium, possessing estrogen-like effects, carcinogenicity, and multiple toxicities. To seek more efficient and practical agents for biological detoxification and broaden their application, this study isolated 194 bacterial strains from the moldy tuberous root of Pseudostellaria heterophylla, which were co-cultured with ZEN. An efficient ZEN-degrading strain H4-3-C1 was screened out by HPLC and identified as Acinetobacter calcoaceticus by morphological observation and molecular identification. The effects of culture medium, inoculation dose, culture time, pH, and temperature on the degradation of ZEN by H4-3-C1 strain were investigated. The mechanism of ZEN degradation and the degrading effect in Coicis Semen were discussed. The degradation rate of 5 µg·mL~(-1) ZEN by H4-3-C1 strain was 85.77% in the LB medium(pH 6) at 28 ℃/180 r·min~(-1) for 24 h with the inoculation dose of 1%. The degradation rate of ZEN in the supernatant of strain culture was higher than that in the intracellular fluid and thalli. The strain was inferred to secret extracellular enzymes to degrade ZEN. In addition, the H4-3-C1 strain could also degrade ZEN in Coicis Semen. If the initial content of ZEN in Coicis Semen was reduced from 90 µg·g~(-1) to 40.68 µg·g~(-1), the degradation rate could reach 54.80%. This study is expected to provide a new strain and application technology for the biological detoxification of ZEN in food processing products and Chinese medicinal materials.


Asunto(s)
Fusarium , Micotoxinas , Zearalenona , Bacterias , Temperatura
17.
Front Microbiol ; 12: 660976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305830

RESUMEN

Controlling the devastating fungal pathogen Fusarium graminearum (Fg) is a challenge due to inadequate resistance in nature. Here, we report on the identification of RNAi molecules and their applications for controlling Fg in wheat through silencing chitin synthase 7 (Chs7), glucan synthase (Gls) and protein kinase C (Pkc). From transgenic Fg strains four RNAi constructs from Chs7 (Chs7RNAi-1, -2, -3, and -4), three RNAi constructs from Gls (GlsRNAi-2, -3, and -6), and one RNAi construct from Pkc (PkcRNAi-5) were identified that displayed effective silencing effects on mycelium growth in medium and pathogenicity in wheat spikes. Transcript levels of Chs7, Gls and Pkc were markedly reduced in those strains. Double-strand RNAs (dsRNAs) of three selected RNAi constructs (Chs7RNAi-4, GlsRNAi-6 and PkcRNA-5) strongly inhibited mycelium growth in vitro. Spray of those dsRNAs on detached wheat leaves significantly reduced lesion sizes; the independent dsRNAs showed comparable effects on lesions with combination of two or three dsRNAs. Expression of three targets Chs7, Gls, and Pkc was substantially down-regulated in Fg-infected wheat leaves. Further application of dsRNAs on wheat spikes in greenhouse significantly reduced infected spikelets. The identified RNAi constructs may be directly used for spray-induced gene silencing and stable expression in plants to control Fusarium pathogens in agriculture.

18.
Plant Dis ; 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34042495

RESUMEN

Pseudostellaria heterophylla (family Caryophyllaceae) is a perennial herbaceous plant. Its tuberous roots are highly valued in traditional Chinese medicine. It is mainly cultivated in a geo-authentic production zone located in the Guizhou, Anhui, Shandong, and Fujian provinces of China (Zhao et al. 2016). The herb is widely used for treating lung diseases and as a spleen tonic (Pang et al. 2011). A severe leaf black spot disease was observed on P. heterophylla in China, from 2018 to 2020. Plants displayed water-soaking symptoms in the early stage of infection, then the watery areas turned brown-red and a black mold appeared on the lesions. At a later stage, the leaf spots showed concentric rings surrounded by a yellow halo, and the initial infection site became dry and necrotic (Supplementary Figure S1). Nine infected plants were collected from three cultivation fields in Shibing County (N 27°4'21", E 108°8'0"), Guizhou province, on April 13th, 2019. The fungus was consistently isolated from symptomatic leaves on potato dextrose agar (PDA) medium according to the method described by Larran et al (2002). A total of 22 isolates were obtained, including 7 isolates of Arcopilus and 15 isolates of Trichoderma. The growth rates of isolate MJ2-2b on PDA and oatmeal agar (OA) medium were 3 to 5 mm/day at 25 °C (Supplementary Figure S2A and S2B). Mycelium of isolate MJ2-2b was dense, yellowish-brown on PDA, while it was sparse, bright-red on OA. Also, the mycelium secreted brownish-red pigment on both PDA and OA. Ascomata when mature were water drop and limoniform. Lateral hairs were brown, erect or flexuous, tapering towards the tips. Ascospores when mature were greyish-white to grey, limoniform, or fusiform to pyriform (Supplementary Figure S2C and S2D). Further, the beta-tubulin gene (Tub2) of the fungus was amplified by using primer pairs T1 and TUB4Rd as described by Wang et al (2016) and subjected to sequencing. NCBI nucleotide BLAST results showed that sequences from seven isolates had a 99.86% identity with A. aureus (strain ChL-C, GenBank accession No. MG889987.1) (Supplementary Figure S2F). Molecular phylogenetic analysis by maximum likelihood method using MEGA 7 confirmed that the fungal isolate clustered with A. aureus. Hence, the causal agent was identified as A. aureus based on morphological and molecular characteristics. The sequence was deposited in GenBank (accession No. MW531453). Pathogenicity tests were conducted on 15-day old tissue-cultured seedlings according to Ghanbary et al (2018) (Supplementary Figure S3). Leaves of 16 seedlings were inoculated with 1×1 mm 5-day-old PDA-grown mycelial plugsof the fungal isolate. The experiment was repeated 3 times. After 10 days, the inoculated leaves showed the same symptoms observed on plants in the field. The associated fungal pathogen was consistently re-isolated from the inoculated seedlings and identified by Tub2 gene sequencing. At present, there are no reports of A. aureus causing disease of plants. To the best of our knowledge, this is the first report of leaf black spot disease on P. heterophylla caused by A. aureus in China.

19.
Toxins (Basel) ; 12(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492959

RESUMEN

Trichothecenes are the most common mycotoxins contaminating small grain cereals worldwide. The C12,13 epoxide group in the trichothecenes was identified as a toxic group posing harm to humans, farm animals, and plants. Aerobic biological de-epoxidation is considered the ideal method of controlling these types of mycotoxins. In this study, we isolated a novel trichothecene mycotoxin-de-epoxidating bacterium, Desulfitobacterium sp. PGC-3-9, from a consortium obtained from the soil of a wheat field known for the occurrence of frequent Fusarium head blight epidemics under aerobic conditions. Along with MMYPF media, a combination of two antibiotics (sulfadiazine and trimethoprim) substantially increased the relative abundance of Desulfitobacterium species from 1.55% (aerobic) to 29.11% (aerobic) and 28.63% (anaerobic). A single colony purified strain, PGC-3-9, was isolated and a 16S rRNA sequencing analysis determined that it was Desulfitobacterium. The PGC-3-9 strain completely de-epoxidated HT-2, deoxynivalenol (DON), nivalenol and 15-acetyl deoxynivalenol, and efficiently eliminated DON in wheat grains under aerobic and anaerobic conditions. The strain PGC-3-9 exhibited high DON de-epoxidation activity at a wide range of pH (6-10) and temperature (15-50 °C) values under both conditions. This strain may be used for the development of detoxification agents in the agriculture and feed industries and the isolation of de-epoxidation enzymes.


Asunto(s)
Desulfitobacterium/metabolismo , Grano Comestible/microbiología , Microbiología de Alimentos , Hongos/metabolismo , Microbiología del Suelo , Tricotecenos/metabolismo , Triticum/microbiología , Concentración de Iones de Hidrógeno , Inactivación Metabólica , Oxígeno/metabolismo , Temperatura
20.
BMC Microbiol ; 20(1): 108, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32370761

RESUMEN

BACKGROUND: The ternary cropping system of Gastradia elata depends on a symbiotic relationship with the mycorrhizal fungi Armillaria mellea, which decays wood to assimilate nutrition for the growth of G. elata. The composition of microbe flora as key determinants of rhizoshere and mycorrhizoshere soil fertility and health was investigated to understand how G. elata and A. mellea impacted on its composition. The next generation pyrosequencing analysis was applied to assess the shift of structure of microbial community in rhizoshere of G. elata and mycorrhizoshere of A. mellea compared to the control sample under agriculture process. RESULTS: The root-associated microbe floras were significantly impacted by rhizocompartments (including rhizoshere and mycorrhizoshere) and agriculture process. Cropping process of G. elata enhanced the richness and diversity of the microbial community in rhizoshere and mycorrhizoshere soil. Furthermore, planting process of G. elata significantly reduced the abundance of phyla Basidiomycota, Firmicutes and Actinobacteria, while increased the abundance of phyla Ascomycota, Chloroflexi, Proteobacteria, Planctomycetes, and Gemmatimonadetes in rhizoshere and mycorrhizoshere. Besides, A. mellea and G. elata significantly enriched several members of saprophytoic and pathogenic fungus (i.e., Exophiala, Leptodontidium, Cosmospora, Cercophora, Metarhizium, Ilyonectria, and Sporothrix), which will enhance the possibility of G. elata disease incidence. At the same time, the ternary cropping system significantly deterred several members of beneficial ectomycorrhizal fungus (i.e., Russula, Sebacina, and Amanita), which will reduce the ability to protect G. elata from diseases. CONCLUSIONS: In the ternary cropping system of G. elata, A. mellea and G. elata lead to imbalance of microbial community in rhizoshere and mycorrhizoshere soil, suggested that further studies on maintaining the balance of microbial community in A. mellea mycorrhizosphere and G. elata rhizosphere soil under field conditions may provide a promising avenue for high yield and high quality G. elata.


Asunto(s)
Armillaria/crecimiento & desarrollo , Bacterias/clasificación , Hongos/citología , Orchidaceae/crecimiento & desarrollo , Análisis de Secuencia de ADN/métodos , Madera/metabolismo , Agricultura , Armillaria/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Hongos/genética , Hongos/crecimiento & desarrollo , Hongos/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Micorrizas/crecimiento & desarrollo , Orchidaceae/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA