Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
R Soc Open Sci ; 6(4): 190418, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31183155

RESUMEN

The production of secondary metabolites, while important for bioengineering purposes, presents a paradox in itself. Though widely existing in plants and bacteria, they have no definite physiological roles. Yet in both native habitats and laboratories, their production appears robust and follows apparent metabolic switches. We show in this work that the enzyme-catalysed process may improve the metabolic stability of the cells. The latter can be responsible for the overall metabolic behaviours such as dynamic metabolic landscape, metabolic switches and robustness, which can in turn affect the genetic formation of the organism in question. Mangrove-derived Streptomyces xiamenensis 318, with a relatively compact genome for secondary metabolism, is used as a model organism in our investigation. Integrated studies via kinetic metabolic modelling, transcriptase measurements and metabolic profiling were performed on this strain. Our results demonstrate that the secondary metabolites increase the metabolic fitness of the organism via stabilizing the underlying metabolic network. And the fluxes directing to NADH, NADPH, acetyl-CoA and glutamate provide the key switches for the overall and secondary metabolism. The information may be helpful for improving the xiamenmycin production on the strain.

3.
Phys Rev E ; 93(6): 062409, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27415300

RESUMEN

While the biochemistry of metabolism in many organisms is well studied, details of the metabolic dynamics are not fully explored yet. Acquiring adequate in vivo kinetic parameters experimentally has always been an obstacle. Unless the parameters of a vast number of enzyme-catalyzed reactions happened to fall into very special ranges, a kinetic model for a large metabolic network would fail to reach a steady state. In this work we show that a stable metabolic network can be systematically established via a biologically motivated regulatory process. The regulation is constructed in terms of a potential landscape description of stochastic and nongradient systems. The constructed process draws enzymatic parameters towards stable metabolism by reducing the change in the Lyapunov function tied to the stochastic fluctuations. Biologically it can be viewed as interplay between the flux balance and the spread of workloads on the network. Our approach allows further constraints such as thermodynamics and optimal efficiency. We choose the central metabolism of Methylobacterium extorquens AM1 as a case study to demonstrate the effectiveness of the approach. Growth efficiency on carbon conversion rate versus cell viability and futile cycles is investigated in depth.


Asunto(s)
Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Cinética , Methylobacterium extorquens/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...