Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 676: 613-625, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39053409

RESUMEN

Broadening the charging and discharging voltage window of high nickel cathode material NCM811 is the most expected method to improve the high specific energy density of batteries currently, yet the cathode-electrolyte interface (CEI) formed by the oxidized and decomposed products of carbonate-based electrolyte under high voltage are always so unsatisfied. Therefore, a voltage-stabilizer, TPFPB (Tris(pentafluoro)phenylborane), added into baseline electrolyte (1 M LiPF6 in EC:EMC:DMC=1:1:1 vol%) to promote the electrochemical performance of the battery at 4.5 V. The results interpret that the TPFPB-contained NCM811-Li half-cells exhibit high specific capacity (167.10 mAh/g), excellent capacity retention rate (CRR) (75.37 %), and high rate performance (173.3 mAh/g at 5C) during 4.5 V. Meanwhile, through the analysis of the physical characterization techniques. the B- and F-rich interfacial layer, named as CEI film, existing at the interface between the cathode and the electrolyte, produced under 4.5 V, is superior, resulting in impeding the structural collapse of the cathode material and the continued dissolution of transition metal ions (TMn+) from the cathode material, as well as, ameliorate the electrochemical polarization of the battery, ultimately, it can stabilize the electrochemical performance of the battery under high voltage. Therein, the present work elucidate a new and substantial approach to enhance the high-voltage performances of rich-Ni cathode materials.

2.
Dalton Trans ; 53(4): 1833-1848, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38175197

RESUMEN

Ni-Co-Mn complexed 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA-NiCoMn) is prepared by hydrolysis of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and complexed reaction with Ni, Co and Mn ions. At the same time, graphene was added to PTCDA-NiCoMnin situ to obtain graphene in situ composited Ni-Co-Mn complexed 3,4,9,10-perylenetetracarboxylic dianhydride composites (PTCDA-NiCoMn-G). The prepared PTCDA-NiCoMn composite exhibited a fibrous structure, and the number of pore units increased with the expansion of the fibrous structure. After the in situ recombination of graphene, shorter PTCDA-NiCoMn tubular fibers were dispersed between the thin layers of graphene, showing a larger surface area with more PTCDA-NiCoMn active components exposed, which is conducive to better electrochemical properties. As a result, the initial charge/discharge capacities of PTCDA-NiCoMn and PTCDA-NiCoMn-G electrodes are 1972.9 and 1806.6 mA h g-1 with initial coulombic efficiencies of 56.3% and 62.52%, respectively, at 100 mA g-1. After 200 cycles, the charge/discharge capacities of PTCDA-NiCoMn and PTCDA-NiCoMn-G are 617.0 and 876.4 mA h g-1 with capacity retention ratios of 51.4% and 73.0% at 100 mA g-1, respectively. Similarly, PTCA-NiCoMn-G electrodes show higher capacities than the PTCA-NiCoMn electrode at different current densities of 0.1, 0.2, 0.5, 1.0, 2.0 and 5 A g-1. The results show that PTCDA-NiCoMn-G electrode displays superior capacity, ICE, cycle and rate behaviors. The complexation of NiCoMn reduces the solubility of the PTCDA active units in the electrolyte, and the in situ recombination of graphene increases the dispersion of the active components, exposes more active sites, and effectively improves the conductive performance, which contributes to the electrochemical properties of the PTCDA-NiCoMn-G electrode.

3.
BMC Microbiol ; 22(1): 137, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590268

RESUMEN

BACKGROUND: Pseudomonas stutzeri S116 is a sulfur-oxidizing bacteria isolated from marine sludge. It exhibited excellent electricity generation as bioanode and biocathode applied in microbial fuel cells (MFCs). Complete genome sequencing of P. stutzeri and cyclic voltammetry method were performed to reveal its mechanism in microbial fuel cells system. RESULTS: This study indicated that the MFCs generated a maximum output voltage of 254.2 mV and 226.0 mV, and maximum power density of 765 mW/m2 and 656.6 mW/m2 respectively. Complete genome sequencing of P. stutzeri S116 was performed to indicate that most function genes showed high similarities with P. stutzeri, and its primary annotations were associated with energy production and conversion (6.84%), amino acid transport and metabolism (6.82%) and inorganic ion transport and metabolism (6.77%). Homology of 36 genes involved in oxidative phosphorylation was detected, which suggests the strain S116 possesses an integrated electron transport chain. Additionally, many genes encoding pilus-assembly proteins and redox mediators (riboflavin and phenazine) were detected in the databases. Thiosulfate oxidization and dissimilatory nitrate reduction were annotated in the sulfur metabolism pathway and nitrogen metabolism pathway, respectively. Gene function analysis and cyclic voltammetry indicated that P. stutzeri probably possesses cellular machinery such as cytochrome c and redox mediators and can perform extracellular electron transfer and produce electricity in MFCs. CONCLUSION: The redox mediators secreted by P. stutzeri S116 were probably responsible for performance of MFCs. The critical genes and metabolic pathways involved in thiosulfate oxide and nitrate reduction were detected, which indicated that the strain can treat wastewater containing sulfide and nitrite efficiently.


Asunto(s)
Fuentes de Energía Bioeléctrica , Pseudomonas stutzeri , Fuentes de Energía Bioeléctrica/microbiología , Catálisis , Electricidad , Electrodos , Nitratos , Pseudomonas stutzeri/genética , Azufre , Tiosulfatos
4.
Colloids Surf B Biointerfaces ; 214: 112482, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35366577

RESUMEN

Conductive hydrogels based on MXene have gained more attention due to the excellent conductive property and biocompatibility. At present, they have great potential in electronic skins, personally healthcare monitoring and human motion sensing. However, MXene are prone to be oxidized due to the abundant hydroxyls, which results in the unstable conductive property of hydrogel. To improve the shortcoming, conductive PAA/PAM/MXene/TA hydrogel was prepared, in which the introduction of TA can prevent MXene from oxidation owing to the great deal of pyrogallol groups. Mechanical tests showed that the tensile strength, toughness and elongation at break of PAA/PAM/MXene/TA hydrogel are 0.251 ± 0.05 MPa, 0.895 ± 0.16 MJ/m3 and 560.82 ± 19.56%, respectively, indicating the hydrogel possess good stretchability. In addition, the MXene and TA were introduced into hydrogel through hydrogen bonds, which endow the hydrogel with good restorability and self-healing property. Resistance variation-strain curves demonstrated that the introduction of MXene endue the hydrogel with appreciable sensing performances. Moreover, in vitro cytotoxicity assay indicated that the hydrogel has good biocompatibility. In conclusion, PAA/PAM/MXene/TA hydrogel has great potential in flexible wearable sensor field.


Asunto(s)
Hidrogeles , Dispositivos Electrónicos Vestibles , Antioxidantes/farmacología , Conductividad Eléctrica , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Resistencia a la Tracción
5.
Nanomaterials (Basel) ; 11(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807249

RESUMEN

Flexible and comfortable wearable electronics are as a second skin for humans as they can collect the physiology of humans and show great application in health and fitness monitoring. MXene Ti3C2Tx have been used in flexible electronic devices for their unique properties such as high conductivity, excellent mechanical performance, flexibility, and good hydrophilicity, but less research has focused on MXene-based cotton fabric strain sensors. In this work, a high-performance wearable strain sensor composed of two-dimensional (2D) MXene d-Ti3C2Tx nanomaterials and cotton fabric is reported. Cotton fabrics were selected as substrate as they are comfortable textiles. As the active material in the sensor, MXene d-Ti3C2Tx exhibited an excellent conductivity and hydrophilicity and adhered well to the fabric fibers by electrostatic adsorption. The gauge factor of the MXene@cotton fabric strain sensor reached up to 4.11 within the strain range of 15%. Meanwhile, the sensor possessed high durability (>500 cycles) and a low strain detection limit of 0.3%. Finally, the encapsulated strain sensor was used to detect subtle or large body movements and exhibited a rapid response. This study shows that the MXene@cotton fabric strain sensor reported here have great potential for use in flexible, comfortable, and wearable devices for health monitoring and motion detection.

6.
J Ethnopharmacol ; 193: 36-44, 2016 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-27396350

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has been widely used in China and its surrounding countries in clinical treatments for centuries-long time. However, due to the complexity of TCM constituents, both action mechanism and material base of TCM remain nearly unknown. AIM OF THE STUDY: The present study was designed to uncover the action mechanism and material base of TCM in a low-cost manner. MATERIALS AND METHODS: Compound Danshen dripping pills (DSP) is a widely used TCM for treatment of atherosclerosis, and was researched here to demonstrate the effectiveness of our method. We constructed a heterogeneous network for DSP, identified the significant network module, and analyzed the primary pharmacological units by performing GO and pathways enrichment analysis. RESULTS: Two significant network modules were identified from the heterogeneous network of DSP, and three compounds out of four hub nodes in the network were found to intervene in the process of atherosclerosis. Moreover, 13 out of 20 enriched pathways that were ranked in top 10 corresponding to both the two pharmacological units were found to be involved in the process of atherosclerosis. CONCLUSIONS: Quercetin, luteolin and apigenin may be the main active compounds which modulate the signaling pathways, such as metabolism of xenobiotics by cytochrome P450, retinol metabolism, etc. The present method helps reveal the action mechanism and material base of DSP for treatment of atherosclerosis.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Canfanos , Medicamentos Herbarios Chinos/farmacología , Humanos , Medicina Tradicional China , Panax notoginseng , Salvia miltiorrhiza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA