Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 90
1.
J Nanobiotechnology ; 22(1): 262, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760823

BACKGROUND: Nanoplastics, are emerging pollutants, present a potential hazard to food security and human health. Titanium dioxide nanoparticles (Nano-TiO2), serving as nano-fertilizer in agriculture, may be important in alleviating polystyrene nanoplastics (PSNPs) toxicity. RESULTS: Here, we performed transcriptomic, metabolomic and physiological analyzes to identify the role of Nano-TiO2 in regulating the metabolic processes in PSNPs-stressed maize seedlings (Zea mays L.). The growth inhibition by PSNPs stress was partially relieved by Nano-TiO2. Furthermore, when considering the outcomes obtained from RNA-seq, enzyme activity, and metabolite content analyses, it becomes evident that Nano-TiO2 significantly enhance carbon and nitrogen metabolism levels in plants. In comparison to plants that were not subjected to Nano-TiO2, plants exposed to Nano-TiO2 exhibited enhanced capabilities in maintaining higher rates of photosynthesis, sucrose synthesis, nitrogen assimilation, and protein synthesis under stressful conditions. Meanwhile, Nano-TiO2 alleviated the oxidative damage by modulating the antioxidant systems. Interestingly, we also found that Nano-TiO2 significantly enhanced the endogenous melatonin levels in maize seedlings. P-chlorophenylalanine (p-CPA, a melatonin synthesis inhibitor) declined Nano-TiO2-induced PSNPs tolerance. CONCLUSIONS: Taken together, our data show that melatonin is involved in Nano-TiO2-induced growth promotion in maize through the regulation of carbon and nitrogen metabolism.


Carbon , Melatonin , Nitrogen , Polystyrenes , Titanium , Zea mays , Zea mays/drug effects , Zea mays/metabolism , Zea mays/growth & development , Titanium/pharmacology , Nitrogen/metabolism , Carbon/metabolism , Melatonin/pharmacology , Polystyrenes/pharmacology , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Nanoparticles/chemistry , Signal Transduction/drug effects , Photosynthesis/drug effects , Oxidative Stress/drug effects
2.
Plant Mol Biol ; 114(3): 37, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38602592

Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.


Nitrates , Setaria Plant , Reactive Oxygen Species , Nitrates/pharmacology , Setaria Plant/genetics , Hydrogen Peroxide , Sodium Chloride , Oxygen , Signal Transduction , Gene Expression Profiling , Nitrogen
3.
Front Plant Sci ; 15: 1355518, 2024.
Article En | MEDLINE | ID: mdl-38529063

Introduction: Selenium-enriched foxtail millet (Setaria italica) represents a functional cereal with significant health benefits for humans. This study endeavors to examine the impact of foliar application of sodium selenite (Na2SeO4) on foxtail millet, specifically focusing on selenium (Se) accumulation and transportation within various plant tissues. Methods: To unravel the molecular mechanisms governing selenium accumulation and transportation in foxtail millet, we conducted a comprehensive analysis of selenium content and transcriptome responses in foxtail millet spikelets across different days (3, 5, 7, and 12) under Na2SeO4 treatment (200 µmol/L). Results: Foxtail millet subjected to selenium fertilizer exhibited significantly elevated selenium levels in each tissue compared to the untreated control. Selenate was observed to be transported and accumulated sequentially in the leaf, stem, and spikes. Transcriptome analysis unveiled a substantial upregulation in the transcription levels of genes associated with selenium metabolism and transport, including sulfate, phosphate, and nitrate transporters, ABC transporters, antioxidants, phytohormone signaling, and transcription factors. These genes demonstrated intricate interactions, both synergistic and antagonistic, forming a complex network that regulated selenate transport mechanisms. Gene co-expression network analysis highlighted three transcription factors in the tan module and three transporters in the turquoise module that significantly correlated with selenium accumulation and transportation. Expression of sulfate transporters (SiSULTR1.2b and SiSULTR3.1a), phosphate transporter (PHT1.3), nitrate transporter 1 (NRT1.1B), glutathione S-transferase genes (GSTs), and ABC transporter (ABCC13) increased with SeO4 2- accumulation. Transcription factors MYB, WRKY, and bHLH were also identified as players in selenium accumulation. Conclusion: This study provides preliminary insights into the mechanisms of selenium accumulation and transportation in foxtail millet. The findings hold theoretical significance for the cultivation of selenium-enriched foxtail millet.

4.
BMC Plant Biol ; 24(1): 164, 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38431546

BACKGROUND: ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that crucially influences plant growth, development, and stress response. However, there is minimal research on the ABI5 family in foxtail millet. RESULTS: In this study, 16 ABI5 genes were identified in foxtail millet, and their sequence composition, gene structures, cis-acting elements, chromosome positions, and gene replication events were analyzed. To more thoroughly evaluate the developmental mechanisms of the SiABI5 family during evolution, we selected three dicotyledons (S. lycopersicum, A. thaliana, F. tataricum) and three (Z. mays, O. sativa, S. bicolor) specific representative monocotyledons associated with foxtail millet for comparative homology mapping. The results showed that foxtail millet ABI5 genes had the best homology with maize. A promoter sequence analysis showed that the SiABI5s contain numerous cis-acting elements related to hormone and stress responses, indicating that the regulation of SiABI5 expression was complex. The expression responses of 16 genes in different tissues, seed germination, and ear development were analyzed. A total of six representative genes were targeted from five subfamilies to characterize their gene expression responses to four different abiotic stresses. Overexpression of SiABI5.12 confers tolerance to osmotic stress in transgenic Arabidopsis thaliana, which demonstrated the function of SiABI5 responded to abiotic stress. CONCLUSIONS: In summary, our research results comprehensively characterized the SiABI5 family and can provide a valuable reference for demonstrating the role of SiABI5s in regulating abiotic stress responses in foxtail millet.


Setaria Plant , Setaria Plant/genetics , Setaria Plant/metabolism , Stress, Physiological/genetics , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism , Gene Expression Profiling
5.
Int J Biol Macromol ; 260(Pt 1): 129469, 2024 Mar.
Article En | MEDLINE | ID: mdl-38242415

This study aimed to investigate the effectiveness of cellulose nanocrystals (CNC) isolated from cotton in augmenting pectin (PEC)/konjac glucomannan (KGM) composite films containing clove essential oil (CEO) for food packaging application. The effects of CNC dosage on film properties were examined by analyzing the rheology of film-forming solutions and the mechanical, barrier, antimicrobial, and CEO-release properties of the films. Rheological and FTIR analysis revealed the enhanced interactions among the film components after CNC incorporation due to its high aspect ratio and abundant hydroxyl groups, which can also prevent CEO droplet aggregation, contributing to form a compact microstructure as confirmed by SEM and 3D surface topography observations. Consequently, the addition of CNC reinforced the polysaccharide matrix, increasing the tensile strength of the films and improving their barrier properties to water vapor. More importantly, antibacterial, controlled release and kinetic simulation experiments proved that the addition of CNC could further slow down the release rate of CEO, prolonging the antimicrobial properties of the films. PEC/KGM/CEO composite films with 15 wt% CNC was found to have relatively best comprehensive properties, which was also most effective in delaying deterioration of grape quality during the storage of 9 days at 25 °C.


Anti-Infective Agents , Mannans , Nanoparticles , Oils, Volatile , Syzygium , Cellulose/chemistry , Oils, Volatile/pharmacology , Clove Oil/pharmacology , Pectins , Anti-Infective Agents/pharmacology , Nanoparticles/chemistry
6.
Sensors (Basel) ; 23(22)2023 Nov 15.
Article En | MEDLINE | ID: mdl-38005575

As the millet ears are dense, small in size, and serious occlusion in the complex grain field scene, the target detection model suitable for this environment requires high computing power, and it is difficult to deploy the real-time detection of millet ears on mobile devices. A lightweight real-time detection method for millet ears is based on YOLOv5. First, the YOLOv5s model is improved by replacing the YOLOv5s backbone feature extraction network with the MobilenetV3 lightweight model to reduce model size. Then, using the multi-feature fusion detection structure, the micro-scale detection layer is augmented to reduce high-level feature maps and low-level feature maps. The Merge-NMS technique is used in post-processing for target information loss to reduce the influence of boundary blur on the detection effect and increase the detection accuracy of small and obstructed targets. Finally, the models reconstructed by different improved methods are trained and tested on the self-built millet ear data set. The AP value of the improved model in this study reaches 97.78%, F1-score is 94.20%, and the model size is only 7.56 MB, which is 53.28% of the standard YoloV5s model size, and has a better detection speed. Compared with other classical target detection models, it shows strong robustness and generalization ability. The lightweight model performs better in the detection of pictures and videos in the Jetson Nano. The results show that the improved lightweight YOLOv5 millet detection model in this study can overcome the influence of complex environments, and significantly improve the detection effect of millet under dense distribution and occlusion conditions. The millet detection model is deployed on the Jetson Nano, and the millet detection system is implemented based on the PyQt5 framework. The detection accuracy and detection speed of the millet detection system can meet the actual needs of intelligent agricultural machinery equipment and has a good application prospect.


Agriculture , Millets , Computers, Handheld , Edible Grain , Intelligence
7.
Acta Biomater ; 168: 540-550, 2023 09 15.
Article En | MEDLINE | ID: mdl-37393970

Although inactivated vaccines have higher safety than live-attenuated vaccines in the control of pseudorabies virus (PRV), their protection efficacy is limited due to insufficient immunogenicity when used alone. High-performance adjuvants that can potentiate immune responses are highly desirable to improve the protection efficacy of inactivated vaccines. In this work, we have developed U@PAA-Car, a Carbopol dispersed zirconium-based metal-organic framework UIO-66 modified by polyacrylic acid (PAA), as a promising adjuvant for inactivated PRV vaccines. The U@PAA-Car has good biocompatibility, high colloidal stability, and antigen (vaccine) loading capacity. It significantly potentiates humoral and cellular immune responses over either U@PAA, Carbopol, or commercial adjuvants such as Alum and biphasic 201 by inducing a higher specific antibody titer, IgG2a/IgG1 ratio, cell cytokine secretion, and splenocyte proliferation. A protection rate of over 90% was observed in challenge tests in the model animal mice and the host animal pigs, which is much higher than that observed with commercial adjuvants. The high performance of the U@PAA-Car is attributed to antigen sustainable release at the injection site and highly efficient antigen internalization and presentation. In conclusion, this work not only demonstrates a great potential of the developed U@PAA-Car nano-adjuvant for the inactivated PRV vaccine but also gives a preliminary explanation of its action mechanism. STATEMENT OF SIGNIFICANCE: We have developed a Carbopol dispersed PAA-modified zirconium-based metal-organic framework UIO-66 (U@PAA-Car) as a promising combination nano-adjuvant for the inactivated PRV vaccine. The U@PAA-Car induced higher specific antibody titers and IgG2a/IgG1 ratio, increased cell cytokines secretion, and better splenocyte proliferation than U@PAA, Carbopol, and the commercial adjuvants Alum and biphasic 201, indicating that it induces a significant potentiation of humoral and cellular immune response. In addition, much higher protection rates were achieved with the U@PAA-Car-adjuvanted PRV vaccine in mice and pigs challenge than those observed from the commercial adjuvant groups. This work not only demonstrates the great potential of the U@PAA-Car nano-adjuvant in an inactivated PRV vaccine but also gives a preliminary explanation of its action mechanism.


Herpesvirus 1, Suid , Metal-Organic Frameworks , Pseudorabies , Animals , Swine , Mice , Pseudorabies/prevention & control , Zirconium/pharmacology , Adjuvants, Immunologic/pharmacology , Immunity, Cellular , Cytokines , Immunoglobulin G , Vaccines, Inactivated
8.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article En | MEDLINE | ID: mdl-37446233

The cytochrome P450 monooxygenases (CYP450) are the largest enzyme family in plant metabolism and widely involved in the biosynthesis of primary and secondary metabolites. Foxtail millet (Setaria italica (L.) P. Beauv) can respond to abiotic stress through a highly complex polygene regulatory network, in which the SiCYP450 family is also involved. Although the CYP450 superfamily has been systematically studied in a few species, the research on the CYP450 superfamily in foxtail millet has not been completed. In this study, three hundred and thirty-one SiCYP450 genes were identified in the foxtail millet genome by bioinformatics methods, which were divided into four groups, including forty-six subgroups. One hundred and sixteen genes were distributed in thirty-three tandem duplicated gene clusters. Chromosome mapping showed that SiCYP450 was distributed on seven chromosomes. In the SiCYP450 family of foxtail millet, 20 conserved motifs were identified. Cis-acting elements in the promoter region of SiCYP450 genes showed that hormone response elements were found in all SiCYP450 genes. Of the three hundred and thirty-one SiCYP450 genes, nine genes were colinear with the Arabidopsis thaliana genes. Two hundred SiCYP450 genes were colinear with the Setaria viridis genes, including two hundred and forty-five gene duplication events. The expression profiles of SiCYP450 genes in different organs and developmental stages showed that SiCYP450 was preferentially expressed in specific tissues, and many tissue-specific genes were identified, such as SiCYP75B6, SiCYP96A7, SiCYP71A55, SiCYP71A61, and SiCYP71A62 in the root, SiCYP78A1 and SiCYP94D9 in leaves, and SiCYP78A6 in the ear. The RT-PCR data showed that SiCYP450 could respond to abiotic stresses, ABA, and herbicides in foxtail millet. Among them, the expression levels of SiCYP709B4, SiCYP71A11, SiCYP71A14, SiCYP78A1, SiCYP94C3, and SiCYP94C4 were significantly increased under the treatment of mesotrione, florasulam, nicosulfuron, fluroxypyr, and sethoxydim, indicating that the same gene might respond to multiple herbicides. The results of this study will help reveal the biological functions of the SiCYP450 family in development regulation and stress response and provide a basis for molecular breeding of foxtail millet.


Arabidopsis , Setaria Plant , Setaria Plant/metabolism , Plant Proteins/metabolism , Chromosome Mapping , Multigene Family , Arabidopsis/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant , Phylogeny
9.
Microorganisms ; 11(7)2023 Jul 18.
Article En | MEDLINE | ID: mdl-37513001

Tribenuron-methyl is used to control broad-leaved weeds and has a promising application prospect in millet fields. However, its negative impact on soil ecology cannot be ignored. Brassinosteroids have been widely reported to enhance plant resistance to stress, but information on brassinosteroids for the remediation of pesticide-contaminated soils is limited. Under field conditions, brassinosteroids were applied to explore their effects on the residues of tribenuron-methyl, soil enzyme activity, soil microbiol community, and millet yield. After applying brassinosteroids according to the dose of 150 mL hm-2, the degradation rate of tribenuron-methyl accelerated. Brassinolide stimulated the activities of catalase and dehydrogenase, while the activities of sucrase and alkaline phosphatase were inhibited. The results of high-throughput sequencing showed that brassinosteroids inhibited the growth of Verrucomicrobia, Ascomycota, and Mortierellomycota and promoted the abundance of cyanobacteria. Additionally, brassinosteroids could also significantly increase the diversity index and change the community structure of soil bacteria and fungi. Further, the predicted function results indicated that brassinosteroids changed some metabolic-related ecological functions of the soil. We also found that brassinolide could increase millet yields by 2.4% and 13.6%. This study provides a theoretical basis for the safe use of tribenuron-methyl in millet fields and a new idea for the treatment of pesticide residues in soil.

10.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article En | MEDLINE | ID: mdl-37511348

Low-temperature stress limits the growth and development of foxtail millet. Freezing stress caused by sudden temperature drops, such as late-spring coldness, often occurs in the seedling stage of foxtail millet. However, the ability and coping strategies of foxtail millet to cope with such stress are not clear. In the present study, we analyzed the self-regulatory mechanisms of freezing stress in foxtail millet. We conducted a physiological study on foxtail millet leaves at -4 °C for seven different durations (0, 2, 4, 6, 8, 10, and 12 h). Longer freezing time increased cell-membrane damage, relative conductance, and malondialdehyde content. This led to osmotic stress in the leaves, which triggered an increase in free proline, soluble sugar, and soluble protein contents. The increases in these substances helped to reduce the damage caused by stress. The activities of superoxide dismutase, peroxidase, and catalase increased reactive oxygen species (ROS) content. The optimal time point for the response to freezing stress was 8 h after exposure. The transcriptome analysis of samples held for 8 h at -4 °C revealed 6862 differentially expressed genes (DEGs), among which the majority are implicated in various pathways, including the starch and sucrose metabolic pathways, antioxidant enzyme pathways, brassinolide (BR) signaling pathway, and transcription factors, according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. We investigated possible crosstalk between BR signals and other pathways and found that BR signaling molecules were induced in response to freezing stress. The beta-amylase (BAM) starch hydrolase signal was enhanced by the BR signal, resulting in the accelerated degradation of starch and the formation of sugars, which served as emerging ROS scavengers and osmoregulators to resist freezing stress. In conclusion, crosstalk between BR signal transduction, and both starch and sucrose metabolism under freezing stress provides a new perspective for improving freezing resistance in foxtail millet.


Seedlings , Setaria Plant , Seedlings/genetics , Seedlings/metabolism , Setaria Plant/metabolism , Freezing , Starch/metabolism , Reactive Oxygen Species/metabolism , Gene Expression Profiling , Signal Transduction , Growth and Development , Gene Expression Regulation, Plant , Transcriptome
11.
Innov Aging ; 7(6): igad071, 2023.
Article En | MEDLINE | ID: mdl-37502337

Background and Objectives: Cross-sectional studies have suggested a potential association between living alone and hypertension risk, but longitudinal evidence remains limited. We aimed to investigate the correlation between living alone, alterations in living arrangements, and hypertension risk among older adults utilizing a population-based longitudinal design. Research Design and Methods: The study included 8 782 older adults (≥65 years) without hypertension from the Chinese Longitudinal Healthy Longevity Survey. Participants were surveyed during the 2008 and 2011/2012 waves and were subsequently followed up in the next wave. Hypertension was defined as systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg, or a self-reported diagnosis of hypertension by a physician. Cox proportional hazards model was used to explore the association between living alone and hypertension. Additionally, we analyzed how switching living arrangements during the follow-up period affects hypertension. Results: During a median follow-up of 2.8 (1.7-3.0) years, 2 750 hypertension events occurred. Compared with living with family, the hazard ratio (HR) (95% confidence interval [CI]) of living alone was 1.19 (1.06-1.33) for hypertension. Similarly, persisting in living alone during follow-up increased the risk of hypertension compared to continuing to live with family (HR 1.24; 95% CI: 1.06-1.45). Compared to married participants who continued to live with family, widowed/divorced participants who transitioned from living with family to living alone experienced a higher risk of hypertension (HR 1.21; 95% CI: 1.00-1.47). Stratified analyses showed that living alone was only associated with an increased hypertension risk for participants aged >80, men, and rural residents. Discussion and Implications: Living alone at baseline or persisting in living alone during follow-up correlated with increased hypertension risk. Divorced or widowed individuals who transitioned from living with family to living alone were still at risk. These results indicate that social support and living arrangements may be important in preventing hypertension in older adults.

12.
Foods ; 12(13)2023 Jun 29.
Article En | MEDLINE | ID: mdl-37444285

Foxtail millet (Setaria italica L.) is a critical grain with high nutritional value and the potential for increased production in arid and semiarid regions. The foxtail millet value chain can be upgraded only by ensuring its comprehensive quality. Thus, samples were collected from different production areas in Shanxi province, China, and compared in terms of quality traits. We established a quality evaluation system utilizing multivariate statistical analysis. The results showed that the appearance, nutritional content, and culinary value of foxtail millet produced in different ecological regions varied substantially. Different values of amino acids (DVAACs), alkali digestion values (ADVs), and total flavone content (TFC) had the highest coefficients of variation (CVs) of 50.30%, 39.75%, and 35.39%, respectively. Based on this, a comprehensive quality evaluation system for foxtail millet was established, and the quality of foxtail millet produced in the five production areas was ranked in order from highest to lowest: Dingxiang > Zezhou > Qinxian > Xingxian > Yuci. In conclusion, the ecological conditions of Xinding Basin are favorable for ensuring the comprehensive quality of foxtail millet. .

13.
Plant Direct ; 7(7): e513, 2023 Jul.
Article En | MEDLINE | ID: mdl-37484545

The increasing ground-level ozone (O3) pollution resulting from rapid global urbanization and industrialization has negative effects on many plants. Nonetheless, many gaps remain in our knowledge of how ornamental plants respond to O3. Rose (Rosa hybrida L.) is a commercially important ornamental plant worldwide. In this study, we exposed four rose cultivars ("Schloss Mannheim," "Iceberg," "Lüye," and "Spectra") to either unfiltered ambient air (NF), unfiltered ambient air plus 40 ppb O3 (NF40), or unfiltered ambient air plus 80 ppb O3 (NF80). Only the cultivar "Schloss Mannheim" showed significant O3-related effects, including foliar injury, reduced chlorophyll content, reduced net photosynthetic rate, reduced stomatal conductance, and reduced stomatal apertures. In "Schloss Mannheim," several transcription factor genes-HSF, WRKY, and MYB genes-were upregulated by O3 exposure, and their expression was correlated with that of NCED1, PP2Cs, PYR/PYL, and UGTs, which are related to ABA biosynthesis and signaling. These results suggest that HSF, WRKY, and MYB transcription factors and ABA are important components of the plant response to O3 stress, suggesting a possible strategy for cultivating O3-tolerant rose varieties.

14.
Sci Bull (Beijing) ; 68(13): 1447-1455, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-37328366

Gas-phase dimethylamine (DMA) has recently been identified as one of the most important vapors to initiate new particle formation (NPF), even in China's polluted atmosphere. Nevertheless, there remains a fundamental need for understanding the atmospheric life cycle of DMA, particularly in urban areas. Here we pioneered large-scale mobile observations of the DMA concentrations within cities and across two pan-region transects of north-to-south (∼700 km) and west-to-east (∼2000 km) in China. Unexpectedly, DMA concentrations (mean ± 1σ) in South China with scattered croplands (0.018 ± 0.010 ppbv, 1 ppbv=10-9 L/L) were over three times higher than those in the north with contiguous croplands (0.005 ± 0.001 ppbv), suggesting that nonagricultural activities may be an important source of DMA. Particularly in non-rural regions, incidental pulsed industrial emissions led to some of the highest DMA concentration levels in the world (>2.3 ppbv). Besides, in highly urbanized areas of Shanghai, supported by direct source-emission measurements, the spatial pattern of DMA was generally correlated with population (R2 = 0.31) due to associated residential emissions rather than vehicular emissions. Chemical transport simulations further show that in the most populated regions of Shanghai, residential DMA emissions can contribute for up to 78% of particle number concentrations. Shanghai is a case study for populous megacities, and the impacts of nonagricultural emissions on local DMA concentration and nucleation are likely similar for other major urban regions globally.

15.
Sci Total Environ ; 894: 165023, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37348726

Tropospheric ozone (O3) is a typical air pollutant with harmful effects on plants, whereas arbuscular mycorrhizal (AM) fungi are ubiquitous plant symbionts that enhance plant resistance to various abiotic stresses. However, whether AM symbiosis decreases plant O3 sensitivity and what the underlying mechanisms are remain unclear. In this study, O3-tolerant poplar clone 107 and O3-sensitive poplar clone 546 were used as test plants. An open-top chamber experiment was conducted to investigate the effects of AM inoculation on plant growth and physiological parameters under O3 enrichment. The results showed that O3 enrichment significantly decreased plant biomass and net photosynthetic rate and increased the leaf shedding rate and malondialdehyde concentration of clone 546. Generally, clone 107 was less responsive to O3 enrichment than clone 546 was. Differences in antioxidant enzyme activity, rather than in specific leaf weight or stomatal conductance, were responsible for the differences in O3 sensitivity between the two clones. AM inoculation significantly increased the biomass and decreased the leaf shedding rate and malondialdehyde concentration of clone 107 but had no significant effect on almost all the indexes of clone 546, suggesting a species-specific mycorrhizal effect on plant O3 sensitivity. Mechanistically, AM symbiosis did not significantly affect nutrient uptake, stomatal conductance, or specific leaf weight of poplar but did significantly increase antioxidant enzyme activity. Linear regression analysis of antioxidant enzyme activities and the effect of O3 on growth and physiological parameters showed that AM symbiosis mediated antioxidant enzyme activities to mitigate O3 injury to the two poplar clones. This study improved the understanding of the protective effects of AM fungi on plants against O3 pollution.


Mycorrhizae , Ozone , Populus , Antioxidants/pharmacology , Symbiosis , Ozone/analysis , Photosynthesis , Populus/physiology , Plant Leaves/chemistry , Plants
16.
Sci Total Environ ; 891: 164325, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37244606

The sensitivity of isoprene emission rate (ISOrate) to ozone (O3) in plant suggests potentially large changes in future isoprene emissions, which will have important consequences for atmospheric chemistry. However, the interspecific variation of ISOrate sensitivity to O3 and its key drivers remain largely unknown. In this study, four urban greening tree species were exposed to two O3 treatments (charcoal-filtered air, CF; and non-filtered ambient air plus 60 ppb extra O3, EO3) in open-top chambers for one growing season. We aimed to compare the interspecific variation in O3 inhibitory effect on ISOrate and explore its physiological mechanism. EO3 decreased the ISOrate by on average 42.5 % across species. According to absolute effect size ranking, the highest ISOrate sensitivity to EO3 was observed in Salix matsudana, followed by Sophora japonica and hybrid poplar clone '546', while Quercus mongolica ISOrate was the least sensitive. Leaf anatomical structures differed in tree species but did not respond to EO3. Furthermore, the ISOrate sensitivity to O3 was driven by the concurrent effects of O3 on ISO synthesis ability (i.e., dimethylallyl diphosphate and isoprene synthase contents) and stomatal conductance. Overall, the mechanistic understanding grained from this study may promote the integrity of O3 effect into process-based ISO emission models.


Ozone , Trees , Photosynthesis , Ozone/pharmacology , Plant Leaves/physiology
17.
Environ Pollut ; 330: 121726, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37127233

Near-surface ozone causes damages on both crop and forest but their long-term spatiotemporal changes in China have been insufficiently explored, preventing comprehensive policy making with food security and climate targets. Moreover, limitation exists in the current metrics for long-term regional ozone risk assessment, AOT40 (the accumulated hourly ozone over a threshold of 40 ppbv) and PODY (phytotoxic ozone dose over a threshold of Y nmol ozone m-2 PLA s-1), with ignorance of meteorological influence for the former and complicated data collection and calculation procedures for the latter. Here, we developed a new metric for ozone-induced risk on winter wheat, O3MET, which can be easily derived based on ozone concentrations and meteorological variables, and is suitable for long-term assessment of ozone-induced wheat loss at the regional scale. Combining with existing metric for forest (O3RH), we comprehensively quantified the ozone damages on winter wheat yield and forest gross primary production (GPP) for mainland China during 2010-2021, the period with fast growth of ozone level across the country. The annual average losses of wheat yield and forest GPP were estimated at 26.5 Mt and 552.6 TgC, accounting for 17% and 4% of the total yield and GPP without ozone impact, respectively. Heavy dual ozone-induced damages on both wheat and forest were presented in East and South China. The ozone-induced wheat yield loss and forest GPP loss were estimated to increase at a rate of 1.8 Mt/yr and 13.9 TgC/yr for the entire country, respectively, driven mainly by the enhanced ambient ozone level within the research period. Besides ecological impact, the ozone pollution in the developed eastern China resulted in serious health burden as well, thus effective actions on ozone pollution alleviation in the region is crucial for reducing its ecological and health risks simultaneously.


Air Pollutants , Ozone , Ozone/toxicity , Ozone/analysis , Triticum , Air Pollutants/toxicity , Air Pollutants/analysis , Forests , China
18.
Int J Biol Macromol ; 240: 124444, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37062380

The use of non-conventional starch sources to develop biodegradable and bioactive starch-based films have attracted increasing attention recently. In this study, a nonconventional chayote tuber starch (CTS) was functionalized by zein-pectin nanoparticle-stabilized cinnamon essential oil (CEO) Pickering emulsion (ZPCO) to develop a novel bioactive composite films for food packaging application. Results demonstrated that antibacterial ZPCO featuring long-term stability was successfully obtained. FTIR and SEM analyses suggested that ZPCO have favorable dispersibility and compatibility with CTS matrix. With ZPCO increasing, the transmittance, tensile strength, and moisture content of composite films decreased, whereas their elongation at break, antimicrobial and antioxidant activities increased. ZPCO added at an appropriate level (2 %) can improve water-resistance of the films and reduce water vapor permeability. More importantly, ZPCO can achieve a slower sustained-release of CEO from composite films into food simulants. Furthermore, the composite film containing 2 % ZPCO is safe and nontoxic as proved by cell cytotoxicity test, and it can significantly prolong the shelf life of ground beef by showing the lowest total volatile base nitrogen and best acceptable sensory characteristic. Overall, the incorporation of ZPCO into CTS films offers a great potential application as a bioactive material in the food packing.


Anti-Infective Agents , Oils, Volatile , Animals , Cattle , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Starch/chemistry , Cinnamomum zeylanicum/chemistry , Emulsions , Anti-Infective Agents/pharmacology , Permeability , Food Packaging/methods
19.
Plants (Basel) ; 12(5)2023 Mar 02.
Article En | MEDLINE | ID: mdl-36904001

Glutathione S-transferases (GSTs) are a critical superfamily of multifunctional enzymes in plants. As a ligand or binding protein, GSTs regulate plant growth and development and detoxification. Foxtail millet (Setaria italica (L.) P. Beauv) could respond to abiotic stresses through a highly complex multi-gene regulatory network in which the GST family is also involved. However, GST genes have been scarcely studied in foxtail millet. Genome-wide identification and expression characteristics analysis of the foxtail millet GST gene family were conducted by biological information technology. The results showed that 73 GST genes (SiGSTs) were identified in the foxtail millet genome and were divided into seven classes. The chromosome localization results showed uneven distribution of GSTs on the seven chromosomes. There were 30 tandem duplication gene pairs belonging to 11 clusters. Only one pair of SiGSTU1 and SiGSTU23 were identified as fragment duplication genes. A total of ten conserved motifs were identified in the GST family of foxtail millet. The gene structure of SiGSTs is relatively conservative, but the number and length of exons of each gene are still different. The cis-acting elements in the promoter region of 73 SiGST genes showed that 94.5% of SiGST genes possessed defense and stress-responsive elements. The expression profiles of 37 SiGST genes covering 21 tissues suggested that most SiGST genes were expressed in multiple organs and were highly expressed in roots and leaves. By qPCR analysis, we found that 21 SiGST genes were responsive to abiotic stresses and abscisic acid (ABA). Taken together, this study provides a theoretical basis for identifying foxtail millet GST family information and improving their responses to different stresses.

20.
Int J Mol Sci ; 24(6)2023 Mar 12.
Article En | MEDLINE | ID: mdl-36982494

Drought is a major limiting factor affecting grain production. Drought-tolerant crop varieties are required to ensure future grain production. Here, 5597 DEGs were identified using transcriptome data before and after drought stress in foxtail millet (Setaria italica) hybrid Zhangza 19 and its parents. A total of 607 drought-tolerant genes were screened through WGCNA, and 286 heterotic genes were screened according to the expression level. Among them, 18 genes overlapped. One gene, Seita.9G321800, encoded MYBS3 transcription factor and showed upregulated expression after drought stress. It is highly homologous with MYBS3 in maize, rice, and sorghum and was named SiMYBS3. Subcellular localization analysis showed that the SiMYBS3 protein was located in the nucleus and cytoplasm, and transactivation assay showed SiMYBS3 had transcriptional activation activity in yeast cells. Overexpression of SiMYBS3 in Arabidopsis thaliana conferred drought tolerance, insensitivity to ABA, and earlier flowering. Our results demonstrate that SiMYBS3 is a drought-related heterotic gene and it can be used for enhancing drought resistance in agricultural crop breeding.


Arabidopsis , Setaria Plant , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Setaria Plant/genetics , Setaria Plant/metabolism , Drought Resistance , Hybrid Vigor , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plant Breeding , Droughts , Stress, Physiological/genetics
...