Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.091
1.
Sensors (Basel) ; 24(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38793823

In the sixth generation (6G) era, intelligent machine network (IMN) applications, such as intelligent transportation, require collaborative machines with communication, sensing, and computation (CSC) capabilities. This article proposes an integrated communication, sensing, and computation (ICSAC) framework for 6G to achieve the reciprocity among CSC functions to enhance the reliability and latency of communication, accuracy and timeliness of sensing information acquisition, and privacy and security of computing to realize the IMN applications. Specifically, the sensing and communication functions can merge into unified platforms using the same transmit signals, and the acquired real-time sensing information can be exploited as prior information for intelligent algorithms to enhance the performance of communication networks. This is called the computing-empowered integrated sensing and communications (ISAC) reciprocity. Such reciprocity can further improve the performance of distributed computation with the assistance of networked sensing capability, which is named the sensing-empowered integrated communications and computation (ICAC) reciprocity. The above ISAC and ICAC reciprocities can enhance each other iteratively and finally lead to the ICSAC reciprocity. To achieve these reciprocities, we explore the potential enabling technologies for the ICSAC framework. Finally, we present the evaluation results of crucial enabling technologies to show the feasibility of the ICSAC framework.

3.
Article En | MEDLINE | ID: mdl-38717889

Video snapshot compressive imaging (SCI) utilizes a 2D detector to capture sequential video frames and compress them into a single measurement. Various reconstruction methods have been developed to recover the high-speed video frames from the snapshot measurement. However, most existing reconstruction methods are incapable of efficiently capturing long-range spatial and temporal dependencies, which are critical for video processing. In this paper, we propose a flexible and robust approach based on the graph neural network (GNN) to efficiently model non-local interactions between pixels in space and time regardless of the distance. Specifically, we develop a motion-aware dynamic GNN for better video representation, i.e., represent each node as the aggregation of relative neighbors under the guidance of frame-by-frame motions, which consists of motion-aware dynamic sampling, cross-scale node sampling, global knowledge integration, and graph aggregation. Extensive results on both simulation and real data demonstrate both the effectiveness and efficiency of the proposed approach, and the visualization illustrates the intrinsic dynamic sampling operations of our proposed model for boosting the video SCI reconstruction results. The code and model will be released.

4.
Signal Transduct Target Ther ; 9(1): 128, 2024 May 27.
Article En | MEDLINE | ID: mdl-38797752

Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.


Neoplasms , Receptors, Notch , Signal Transduction , Humans , Receptors, Notch/genetics , Receptors, Notch/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy , Signal Transduction/genetics , Epithelial-Mesenchymal Transition/genetics , Molecular Targeted Therapy , Tumor Microenvironment/genetics , Tumor Microenvironment/drug effects
5.
Cell Rep Med ; 5(5): 101536, 2024 May 21.
Article En | MEDLINE | ID: mdl-38697103

Spatial transcriptomics (ST) provides insights into the tumor microenvironment (TME), which is closely associated with cancer prognosis, but ST has limited clinical availability. In this study, we provide a powerful deep learning system to augment TME information based on histological images for patients without ST data, thereby empowering precise cancer prognosis. The system provides two connections to bridge existing gaps. The first is the integrated graph and image deep learning (IGI-DL) model, which predicts ST expression based on histological images with a 0.171 increase in mean correlation across three cancer types compared with five existing methods. The second connection is the cancer prognosis prediction model, based on TME depicted by spatial gene expression. Our survival model, using graphs with predicted ST features, achieves superior accuracy with a concordance index of 0.747 and 0.725 for The Cancer Genome Atlas breast cancer and colorectal cancer cohorts, outperforming other survival models. For the external Molecular and Cellular Oncology colorectal cancer cohort, our survival model maintains a stable advantage.


Deep Learning , Neoplasms , Tumor Microenvironment , Humans , Prognosis , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/diagnosis , Transcriptome/genetics , Gene Expression Regulation, Neoplastic , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis
6.
J Agric Food Chem ; 72(21): 12270-12280, 2024 May 29.
Article En | MEDLINE | ID: mdl-38743450

Allergenicity of soybean 7S protein (7S) troubles many people around the world. However, many processing methods for lowering allergenicity is invalid. Interaction of 7S with phenolic acids, such as chlorogenic acid (CHA), to structurally modify 7S may lower the allergenicity. Hence, the effects of covalent (C-I, periodate oxidation method) and noncovalent interactions (NC-I) of 7S with CHA in different concentrations (0.3, 0.5, and 1.0 mM) on lowering 7S allergenicity were investigated in this study. The results demonstrated that C-I led to higher binding efficiency (C-0.3:28.51 ± 2.13%) than NC-I (N-0.3:22.66 ± 1.75%). The C-I decreased the α-helix content (C-1:21.06%), while the NC-I increased the random coil content (N-1:24.39%). The covalent 7S-CHA complexes of different concentrations had lower IgE binding capacity (C-0.3:37.38 ± 0.61; C-0.5:34.89 ± 0.80; C-1:35.69 ± 0.61%) compared with that of natural 7S (100%), while the noncovalent 7S-CHA complexes showed concentration-dependent inhibition of IgE binding capacity (N-0.3:57.89 ± 1.23; N-0.5:46.91 ± 1.57; N-1:40.79 ± 0.22%). Both interactions produced binding to known linear epitopes. This study provides the theoretical basis for the CHA application in soybean products to lower soybean allergenicity.


Antigens, Plant , Chlorogenic Acid , Glycine max , Immunoglobulin E , Soybean Proteins , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Glycine max/chemistry , Glycine max/immunology , Immunoglobulin E/immunology , Soybean Proteins/chemistry , Soybean Proteins/immunology , Antigens, Plant/chemistry , Antigens, Plant/immunology , Humans , Food Hypersensitivity/immunology , Allergens/chemistry , Allergens/immunology , Protein Binding , Seed Storage Proteins/chemistry , Seed Storage Proteins/immunology
7.
ISA Trans ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38782639

Autonomous race driving poses a complex control challenge as vehicles must be operated at the edge of their handling limits to reduce lap times while respecting physical and safety constraints. This paper presents a novel reinforcement learning (RL)-based approach, incorporating the action mapping (AM) mechanism to manage state-dependent input constraints arising from limited tire-road friction. A numerical approximation method is proposed to implement AM, addressing the complex dynamics associated with the friction constraints. The AM mechanism also allows the learned driving policy to be generalized to different friction conditions. Experimental results in our developed race simulator demonstrate that the proposed AM-RL approach achieves superior lap times and better success rates compared to the conventional RL-based approaches. The generalization capability of driving policy with AM is also validated in the experiments.

8.
J Org Chem ; 2024 May 24.
Article En | MEDLINE | ID: mdl-38787343

A halide-free ionic pair organocatalyst was proposed for the cycloaddition of CO2 into epoxide reactions. Cholinium pyridinolate ionic pairs with three different substitution positions were designed. Under conditions of temperature of 120 °C, pressure of 1 MPa CO2, and catalyst loading of 5 mol %, the optimal catalyst cholinium 4-pyridinolate ([Ch]+[4-OP]-) was employed. After a reaction time of 12 h, styrene oxide was successfully converted into the corresponding cyclic carbonate, and its selectivity was improved to 90%. A series of terminal epoxides were converted into cyclic carbonates within 12 h, with yields ranging from 80 to 99%. The proposed mechanism was verified by 1H NMR and 13C NMR titrations. Cholinium cations act as a hydrogen bond donor to activate epoxides, and pyridinolate anions combine with carbon dioxide to form intermediate carbonate anions that attack epoxides as nucleophiles and lead to ring opening. In summary, a halide-free ionic pair organocatalyst was designed and the catalytic mechanism in the cycloaddition of CO2 into epoxides reactions was proposed.

9.
Article En | MEDLINE | ID: mdl-38776209

In hyperspectral image (HSI) processing, the fusion of the high-resolution multispectral image (HR-MSI) and the low-resolution HSI (LR-HSI) on the same scene, known as MSI-HSI fusion, is a crucial step in obtaining the desired high-resolution HSI (HR-HSI). With the powerful representation ability, convolutional neural network (CNN)-based deep unfolding methods have demonstrated promising performances. However, limited receptive fields of CNN often lead to inaccurate long-range spatial features, and inherent input and output images for each stage in unfolding networks restrict the feature transmission, thus limiting the overall performance. To this end, we propose a novel and efficient information-aware transformer-based unfolding network (ITU-Net) to model the long-range dependencies and transfer more information across the stages. Specifically, we employ a customized transformer block to learn representations from both the spatial and frequency domains as well as avoid the quadratic complexity with respect to the input length. For spatial feature extractions, we develop an information transfer guided linearized attention (ITLA), which transmits high-throughput information between adjacent stages and extracts contextual features along the spatial dimension in linear complexity. Moreover, we introduce frequency domain learning in the feedforward network (FFN) to capture token variations of the image and narrow the frequency gap. Via integrating our proposed transformer blocks with the unfolding framework, our ITU-Net achieves state-of-the-art (SOTA) performance on both synthetic and real hyperspectral datasets.

10.
Mol Biotechnol ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38748071

Langerhans cell histiocytosis (LCH) is a rare condition predominantly affecting young children. Activation of the MAPK pathway has offered key new insights into the pathogenesis of LCH; however, the precise mechanisms underlying its occurrence and development are still far from being completely elucidated. There is still a relapse/reactivation rate in patients with multisystem LCH. Therefore, this study aimed to investigate other potential LCH pathophysiologies and prospective therapeutic targets. The gene expression omnibus (GEO) database was used to retrieve gene expression profiles of LCH (GSE16395). Three distinct types of analyses were performed after identifying the common differentially expressed genes (DEGs) in LCH: hub gene identification, functional annotation, module construction, drug repositioning, and expression analysis via immunohistochemistry (IHC). We identified 417 common DEGs and 50 central hub genes. This functional study highlighted the significance of keratinization, skin development, and inflammation. In addition, we predicted new drug candidates (RS2 drugs targeting matrix metalloprotease1, MMP1) that could be used for LCH treatment. Finally, gene-miRNA and gene-TF networks and immune cell infiltration were analyzed for MMP1-related genes. MMP1 expression levels in LCH tissues were validated by IHC. Our study identified the central communal genes and novel drug candidates. These shared pathways and hub genes offer new perspectives on future mechanisms of action and therapeutic targets.

11.
Article En | MEDLINE | ID: mdl-38700966

This article puts forth a new training data-untethered model poisoning (MP) attack on federated learning (FL). The new MP attack extends an adversarial variational graph autoencoder (VGAE) to create malicious local models based solely on the benign local models overheard without any access to the training data of FL. Such an advancement leads to the VGAE-MP attack that is not only efficacious but also remains elusive to detection. VGAE-MP attack extracts graph structural correlations among the benign local models and the training data features, adversarially regenerates the graph structure, and generates malicious local models using the adversarial graph structure and benign models' features. Moreover, a new attacking algorithm is presented to train the malicious local models using VGAE and sub-gradient descent, while enabling an optimal selection of the benign local models for training the VGAE. Experiments demonstrate a gradual drop in FL accuracy under the proposed VGAE-MP attack and the ineffectiveness of existing defense mechanisms in detecting the attack, posing a severe threat to FL.

12.
Mol Immunol ; 171: 36-46, 2024 May 18.
Article En | MEDLINE | ID: mdl-38763105

Damage to the heart can start the repair process and cause cardiac remodeling. B cells play an important role in this process. B cells are recruited to the injured place and activate cardiac remodeling through secreting antibodies and cytokines. Different types of B cells showed specific functions in the heart. Among all types of B cells, heart-associated B cells play a vital role in the heart by secreting TGFß1. B cells participate in the activation of fibroblasts and promote cardiac fibrosis. Four subtypes of B cells in the heart revealed the relationship between the B cells' heterogeneity and cardiac remodeling. Many cardiovascular diseases like atherosclerosis, heart failure (HF), hypertension, myocardial infarction (MI), and dilated cardiomyopathy (DCM) are related to B cells. The primary mechanisms of these B cell-related activities will be discussed in this review, which may also suggest potential novel therapeutic targets.

13.
Biomed Pharmacother ; 176: 116843, 2024 May 28.
Article En | MEDLINE | ID: mdl-38810405

Hyperlipidemia-induced osteoporosis is marked by increased bone marrow adiposity, and treatment with statins for hyperlipidemia often leads to new-onset osteoporosis. Endosome-associated trafficking regulator 1 (ENTR1) has been found to interact with different proteins in pathophysiology, but its exact role in adipogenesis is not yet understood. This research aimed to explore the role of ENTR1 in adipogenesis and to discover a new small molecule that targets ENTR1 for evaluating its effectiveness in treating hyperlipidemia-induced osteoporosis. We found that ENTR1 expression increased during the adipogenesis of bone marrow mesenchymal cells (BMSCs). ENTR1 gain- and loss-of-function assays significantly enhanced lipid droplets formation. Mechanistically, ENTR1 binds peroxisome proliferator-activated receptor γ (PPARγ) and enhances its expression, thereby elevating adipogenic markers including C/EBPα and LDLR. Therapeutically, AN698/40746067 attenuated adipogenesis by targeting ENTR1 to suppress PPARγ. In vivo, AN698/40746067 reduced bone marrow adiposity and bone loss, as well as prevented lipogenesis-related obesity, inflammation, steatohepatitis, and abnormal serum lipid levels during hyperlipidemia. Together, these findings suggest that ENTR1 facilitates adipogenesis by PPARγ involved in BMSCs' differentiation, and targeted inhibition of ENTR1 by AN698/40746067 may offer a promising therapy for addressing lipogenesis-related challenges and alleviating osteoporosis following hyperlipidemia.

14.
J Am Chem Soc ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38771660

The hydrogenolysis or hydrodeoxygenation of a carbonyl group, where the C═O group is converted to a CH2 group, is of significant interest in a variety of fields. A challenge in electrochemically achieving hydrogenolysis of a carbonyl group with high selectivity is that electrochemical hydrogenation of a carbonyl group, which converts the C═O group to an alcohol group (CH-OH), is demonstrated not to be the initial step of hydrogenolysis. Instead, hydrogenation and hydrogenolysis occur in parallel, and they are competing reactions. This means that although both hydrogenolysis and hydrogenation require adding H atoms to the carbonyl group, they involve different intermediates formed on the electrode surface. Thus, revealing the difference in intermediates, transition states, and kinetic barriers for hydrogenolysis and hydrogenation pathways is the key to understanding and controlling hydrogenolysis/hydrogenation selectivity of carbonyl compounds. In this study, we aimed to identify features of reactant molecules that can affect their hydrogenolysis/hydrogenation selectivity on a Zn electrode that was previously shown to promote hydrogenolysis over hydrogenation. In particular, we examined the electrochemical reduction of para-substituted benzaldehyde compounds with substituent groups having different electron donating/withdrawing abilities. Our results show a strikingly systematic impact of the substituent group where a stronger electron-donating group promotes hydrogenolysis and a stronger electron-withdrawing group promotes hydrogenation. These experimental results are presented with computational results explaining the substituent effects on the thermodynamics and kinetics of electrochemical hydrogenolysis and hydrogenation pathways, which also provide critically needed information and insights into the transition states involved with these pathways.

15.
World Neurosurg ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38697261

OBJECTIVE: To investigate whether risk of new vertebral compression fractures (NVCFs) was associated with vicinity to treated vertebrae in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fractures (OVCFs). METHODS: All OVCF (T6-L5) patients treated with PVP between January 2016 and December 2020 were retrospectively reviewed. Vicinity to treated vertebrae was defined as the number of vertebrae between an untreated and its closest treated level. The closest treated level was chosen as reference vertebra. Clinical, radiologic, and surgical parameters were compared between groups of reference vertebrae for each vicinity NVCF. RESULTS: In total, 1348 patients with 1592 fractured and 14,584 normal vertebrae were enrolled. NVCF was identified in 20.1% (271 of 1348) patients in 2.2% (319 of 14584) vertebrae in a mean follow-up time of 24.3 ± 11.9 months. Rate of NVCF in vicinity 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 level were 4.6% (130 of 2808), 2.4% (62 of 2558), 1.8% (42 of 2365), 1.5% (31 of 2131), 1.3% (23 of 1739), 1.3% (17 of 1298), 0.8% (7 of 847), 0.9% (4 of 450), 0.8% (2 of 245), 0.9% (1 of 117), and 0% (0 of 26), respectively. Rate of NVCF in vicinity 1 level was significantly higher than that in vicinity 2, 3, 4, 5, 6, 7, 8, and 9 level, respectively. However, compared to reference vertebrae for vicinity 1 NVCF, any clinical, radiologic, or surgical parameters were not significantly different in those for vicinity 2, 3, and 4 NVCF, respectively. CONCLUSIONS: The closer vicinity to treated vertebrae in PVP, the higher rate of NVCF at follow-up. However, any clinical, radiologic, or surgical parameters might not matter in this phenomenon of vicinity-related NVCF.

16.
AIDS ; 38(7): 1087-1090, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38691052

Data from the CDC's Medical Monitoring Project indicate that the United States is on track to meet one of five National HIV/AIDS Strategy (NHAS) Quality of Life goals among cisgender Black women, specifically, hunger/food insecurity. Substantial work needs to be done to improve self-rated health and to decrease unmet need for mental health services. Enhanced and coordinated action are necessary to reach all Quality of Life goals in this NHAS priority population.


Black or African American , HIV Infections , Quality of Life , Humans , Female , HIV Infections/psychology , United States , Black or African American/psychology , Adult , Food Insecurity
17.
Food Chem ; 452: 139574, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38733683

Barley leaves (BLs) naturally contained abundant phenolics, most of which are hardly completely released from food matrix during gastrointestinal digestion. Superfine grinding (SFG) and high hydrostatic pressure (HHP) are generally used to treat the functional plants due to their effectiveness to cell wall-breaking and improvement of nutraceutical bioavailability. Thus, this study investigated the synergistic effects of SFG and HHP (100, 300, 500 MPa/20 min) on the bioaccessbility of typical phenolics in BLs during the simulated in-vitro digestion. The results demonstrated that the highest bioaccessbility (40.98%) was found in the ultrafine sample with HHP at 500 MPa. CLSM and SEM confirmed SFG led to microstructurally rapture of BLs. Moreover, the recovery index of ABTS radical scavenging activity and FRAP of HHP-treated ultrafine and fine BLs samples maximumly increased by 53.62% and 9.61%, respectively. This study is expecting to provide the theoretical basis to improve the consumer acceptance of BLs.


Antioxidants , Digestion , Hordeum , Hydrostatic Pressure , Plant Leaves , Polyphenols , Hordeum/chemistry , Hordeum/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Polyphenols/chemistry , Polyphenols/metabolism , Food Handling , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/metabolism , Humans
19.
J Mol Cell Biol ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38719542

Defects in the FAcilitates Chromatin Transcription (FACT) complex, a histone chaperone composed of SSRP1 and SUPT16H, are implicated in intellectual disability. Here, we reveal that the FACT complex promotes glycolysis and sustains the correct cell fate of neural stem cells/neuroblasts in the Drosophila 3rd instar larval central brain. We show that the FACT complex binds to the promoter region of the estrogen-related receptor (ERR) gene and positively regulates ERR expression. ERR is known to act as an aerobic glycolytic switch by upregulating the enzymes required for glycolysis. Dysfunction of the FACT complex leads to the downregulation of ERR transcription, resulting in a decreased ratio of glycolysis to oxidative phosphorylation (G/O) in neuroblasts. Consequently, neuroblasts exhibit smaller cell sizes, lower proliferation potential, and altered cell fates. Overexpression of ERR or suppression of mitochondrial oxidative phosphorylation in neuroblasts increases the relative G/O ratio and rescues defective phenotypes caused by dysfunction of the FACT complex. Thus, the G/O ratio, mediated by the FACT complex, plays a crucial role in neuroblast cell fate maintenance. Our study may shed light on the mechanism by which mutations in the FACT complex lead to intellectual disability in humans.

20.
J Natl Cancer Inst ; 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38720565

BACKGROUND: Persons with HIV (PWH) at highest risk of anal cancer include gay, bisexual, and other men who have sex with men (GBMSM) and transgender women aged ≥ 35 years, and other PWH aged ≥ 45 years. Identifying and treating precancerous lesions can reduce anal cancer incidence in these groups. We assessed prevalence of anal cytology and access to high-resolution anoscopy (HRA) among PWH, overall and those at highest risk. METHODS: Data were obtained from the CDC's Medical Monitoring Project (MMP), a population-based survey of PWH aged ≥ 18 years, and a supplemental MMP facility survey. We report weighted percentages of PWH receiving anal cytology during the past 12 months, access to HRA, and characteristics of HIV care facilities by availability of HRA. RESULTS: Overall, 4.8% (95% CI 3.4 to 6.1) of PWH had anal cytology in the prior 12 months. Only 7.7% (95% CI 5.1 to 10.6) of GBMSM and transgender women aged ≥ 35 years, and 1.9% (95% CI 0.9 to 2.9) of all other PWH aged ≥ 45 years, had anal cytology. Prevalence was statistically significantly low among PWH with the following characteristics: non-Hispanic/Latino Black/African American, ≤ high school education, heterosexual orientation, and living in Southern MMP states. Among PWH, 32.8% (95% CI 28.0 to 37.7) had no HRA access on-site/through referral at their care facility; 22.2% (95% CI 19.5 to 24.9) had on-site access; 45.0% (95% CI 41.5 to 48.5) had HRA available through referral. Most facilities that received Ryan White HIV/AIDS Program funding, cared for > 1000 PWH, or provided on-site colposcopy also provided HRA on-site/through referral. CONCLUSIONS: Anal cytology and access to HRA was low among PWH, including those at highest risk of anal cancer. Our data may inform large-scale implementation of anal cancer prevention efforts.

...