Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 359: 142361, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761827

RESUMEN

The abundance of microplastics (MPs) in soil environments has attracted significant attentions, due to their impact on soil physico-chemical properties. However, limited information is available on the influences of MPs on soil carbon composition and microbial utilization characteristics. Therefore, a two-month incubation experiment was conducted to add polyethylene microplastics (PE-MPs) with different levels (1%, 10%) and sizes (150-300 µm and 75-150 µm) into different soils. After that, soil chemical properties including the dissolved organic carbon (DOC), spectral characteristics of dissolved organic matter (DOM) and soil microbial characteristics were analyzed. Results revealed that PE-MPs addition caused significant differences in soil chemical properties between farmland and woodland soils, particularly in soil pH, DOM composition, and soil phosphatase activity. Woodland soil always exhibited higher levels of DOC content, microbial diversity, and soil carbon source utilization compared to farmland soil, leading to increased humification in the DOM of woodland soil. PE-MPs with a larger particle size significantly increased both the soil DOC content and enzyme activity. Addition of PE-MPs altered the soil DOM composition, and the fluorescence parameters like the biological index (BIX) and humification degree. Moreover, the carbon source utilization intensity of microorganisms on PE MPs-contaminated soils is higher in woodland soils. Various analyses confirmed that compared to other soil properties, characteristics of soil DOM had a more significant impact on soil microbial community composition. Thus, PE-MPs in conjunction with soil DOM spectral characteristics regulated soil microbial diversity, which is crucial for understanding soil carbon sequestration.


Asunto(s)
Carbono , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Suelo/química , Contaminantes del Suelo/análisis , Carbono/análisis , Microplásticos/análisis , Sustancias Húmicas/análisis
2.
Chemosphere ; 349: 140790, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38013023

RESUMEN

The reuse of arsenic (As)-contaminated paddy fields is a global challenge because long-term flooding would result in As release due to the reductive dissolution of iron minerals. Biochar amendment is a common and effective remediation technique for As-contaminated paddy soil. However, the literature is still lacking in systematic research on the function of biochar in controlling the complexation of released dissolved organic matter (DOM) and iron oxides and its synergistic impact on the availability of As in flooded paddy soil. In the present study, bamboo biochar was prepared at different pyrolysis temperatures (300, 450 and 600 °C), as BB300, BB450 and BB600. Four paddy soil treatments including BB300, BB450, BB600 applications (1% ratio, m/m, respectively) and control (CK, no biochar application) were set and incubated for 60 d in flooding condition. The results showed that As availability represented by adsorbed As species (A-As) was mitigated by BB450 amendment compared with CK. The amendment of BB450 in paddy soil facilitated the complexation of HCl extractable Fe(III)/(II) and DOM and formation of amorphous iron oxides (e.g. complexed Fe species). Moreover, the abundance of Geobacteraceae and Xanthomonadaceae, as common electroactive bacteria, was promoted in the BB450 treated paddy soil in comparison to CK, which assisted to form amorphous iron oxides. The formed amorphous iron oxides then facilitated the formation of ternary complex (As-Fe-DOM) with highly stability, which could be considered as a mechanism for As immobilization after biochar was applied to the flooding paddy soil. Thus, the synergistic effect between amorphous iron oxides and electroactive stains could make main contribution to the passivation of released As in paddy soil under long-term flooding condition. This study provided a new insight for As immobilization via regulating iron-organic ligand complexation amendment with biochar in flooding paddy soil.


Asunto(s)
Arsénico , Oryza , Sasa , Contaminantes del Suelo , Arsénico/análisis , Carbón Orgánico , Compuestos Férricos , Suelo , Ligandos , Oxidación-Reducción , Hierro , Óxidos , Contaminantes del Suelo/análisis
3.
Sci Total Environ ; 892: 164799, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37302614

RESUMEN

Cadmium (Cd) and polystyrene microplastics (PS) co-contamination always occurs in environment; however, the trophic transfer of Cd and PS is still poorly understood. A hydroponic experiment was conducted to investigate the behavior of Cd in lettuce, together with the root or foliar exposure of different sized PS. Accumulation and chemical form distributions of Cd in leaves were distinguished into young and mature leaves. Subsequently, a 14-day snail feeding experiment was performed. Data showed that Cd accumulation in roots, rather than in leaves, are significantly affected by PS coexistence. However, mature leaves had a higher Cd content than young leaves under the root exposure of PS, while a reverse effect was observed in the foliar exposure. There existed a positive correlation between the food-chain transfer associated Cd (CdFi+Fii+Fiii) in mature leaves and Cd content in snail soft tissue (r = 0.705, p < 0.001), but not in young leaves. Though no bio-amplification of Cd in food chain was observed, an increase of Cd transfer factor (TF) from lettuce to snail was noted in the root exposure of 5 µm PS and the foliar exposure of 0.2 µm PS. Moreover, we observed a highest increase rate of 36.8 % in TF values from lettuce to snail viscera, and a chronic inflammatory response in snail stomach tissue. Therefore, more attentions should be paid to study the ecological risks of heavy metals and microplastics co-contamination in environment.


Asunto(s)
Cadmio , Lactuca , Animales , Cadmio/farmacología , Microplásticos , Poliestirenos , Plásticos , Cadena Alimentaria , Caracoles , Hojas de la Planta , Fraccionamiento Químico
4.
Sci Total Environ ; 869: 161774, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36708830

RESUMEN

Identification of potential toxic element (PTE) sources and their specific human health risk is critical to the management of PTEs in soils. In this study, multi-medium were collected from a mercury­thallium polymetallic mining area in Southwestern China. Hg isotope technique together with positive matrix factorization (PMF) model was used to identify PTE sources and assess their source-oriented health risk. Results showed that among the studied PTEs, this study area presented high pollution of Hg, Tl and As, with higher concentrations than their corresponding background values of Guizhou province, yet their average concentrations in covering soils were significantly lower than those in the natural soils. The Tl in coix grains should also be paid more attention due to its high concentration. Both natural and covering soils had different Hg isotope composition with tailings, while sediments have similar Hg isotope fractionation with covering soils. According to the PMF model, three sources in both natural and covering soils were apportioned and Hg, Tl and As were mainly influenced by the historical mining activities, which also confirmed by their Hg isotope signatures. The contributions of historical mining activities accounted for 40 % and 20 % of the PTEs in natural and covering soils, respectively. The assessment of source-specific health risks suggested that the non-carcinogenic risk of Hg, Tl and As was much higher than other elements. Historical mining activities were regarded as the major contributor to health risks (79 % and 76 % for natural soils and 50 % and 59 % for covering soils, respectively). This indicated that the restoration of coveing soils indeed decreased the health risk in this study area. These findings thus highlight the importance of ongoing monitoring of covering soils in the polymetallic mining area, which is imperative for preferably assessing the health risk of PTEs in similar mining area worldwide.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Humanos , Mercurio/análisis , Talio , Isótopos de Mercurio , Suelo , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , China , Medición de Riesgo , Metales Pesados/análisis
5.
Huan Jing Ke Xue ; 43(2): 762-769, 2022 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-35075850

RESUMEN

Nitrogen mineralization in riparian soil changes the migration and utilization efficiency of nitrogen, which is closely related to the control of water eutrophication. The differences in soil properties caused by land use alter nitrogen retention and transport capacity. Therefore, the soil of three land use types (woodland, grassland, and cultivated land) in the western riparian zone of Taihu Lake were selected for research on the dynamic changes in nitrogen mineralization amount using an incubation experiment and a leaching characteristics by soil column leaching experiment, and their environmental effects were also studied under different biochar addition conditions (0%, 1%, and 5%). The results showed that, in general, the addition of biochar inhibited nitrogen mineralization in forest land and grassland soil, whereas the effect of biochar on nitrogen mineralization in cultivated land was promoted in low concentrations but inhibited in high concentrations. Leaching experiments showed that the biochar addition reduced the loss of soil mineral nitrogen, and the reduction rate in ammonia nitrogen was 23.28%-39.79%, whereas there was little difference between the three land use types. The nitrate decreased by 17.20%-44.49%, and the reduction rate of cultivated land was smaller than that of forest land and grassland. In conclusion, the input of biochar into grassland and cultivated land can better maintain soil fertility and reduce soil nitrogen loss in riparian soil.


Asunto(s)
Nitrógeno , Suelo , Carbón Orgánico , Lagos , Nitrógeno/análisis
6.
Bull Environ Contam Toxicol ; 107(6): 1032-1042, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34230989

RESUMEN

A multi-medium system, involving tailing area (tailings, surrounding soils and water) and downstream agricultural area (river water, sediments and farmland soils), was conceived to evaluate the pollution status of potential toxic elements (PTEs, including Fe, Mn, Ni, Cu, Zn, As, Sn, Pb, Cr and Cd) and environmental risks in a tin-polymetallic mine area southwest China. The results indicated that tailings exhibited representative enrichment and combination characteristics of Sn, Cu, Ni, Fe, As, Pb and Cr compared to surrounding soils. Acid mine drainage (AMD) from tailings and other mining-related sources greatly affected river water and farmland soils, resulting in soil acidification and accumulation of Sn, As, Cu and Pb in paddy soils. Overall, potential ecological risks posed by tailings and river sediments, and pollution risks from Cu, As and Pb in farmland should be concerned. Therefore, effective measures should be urgently taken to prevent PTEs and AMD into surrounding environmental media.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Estaño
7.
Huan Jing Ke Xue ; 42(6): 2787-2795, 2021 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-34032078

RESUMEN

In order to explore the characteristics and environmental significance of available nitrogen and phosphorus in different land-water transition zones, soil and sediment samples from three study areas, including the upstream watershed of Minjiang River (MJU), western watershed of Hongze Lake (HZW), and western watershed of Taihu Lake (THW), were collected and analyzed. The results showed that the contents of total nitrogen and phosphorus in THW were higher than those of other two study areas. The contents of nitrogen and phosphorus in sediments were higher than those in soils of HZW. The distribution trend of available nitrogen and available phosphorus was generally consistent with the distribution trend of total nitrogen and phosphorus. The proportions of available nitrogen and phosphorus in THW and HZW were much higher than those in MJU, and the proportions of available nitrogen and phosphorus in sediments were higher than those in soils. The physiochemical properties such as pH value, organic matter, and iron and aluminum oxides were related to the available nitrogen and phosphorus in the soil and sediment, but correlations between them were complex. The distribution patterns of available nitrogen and phosphorus in the soil and sediments of the land-water transition zone reflect the impacts of the natural environment and human activities, particularly those of the latter.

8.
Environ Monit Assess ; 193(6): 335, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33973104

RESUMEN

The total amount and morphology of nitrogen and phosphorus in sediments have important environmental significance. The study of the ecological risk assessment of nitrogen and phosphorus in sediments is important to understand the environmental quality of water body in the basin. In this study, taking the Futunxi Basin of Fujian Province as an example, the single factor index and bioavailability coefficient method were used to evaluate the ecological risk of nitrogen and phosphorus in the sediments, and reveal the spatial change and environmental significance of the nitrogen and phosphorus forms. The results showed that different morphological components of the bio-available nitrogen were distributed as organic sulfide bound nitrogen (SOEF-N) > iron-manganese oxidized nitrogen (SAEF-N) > weak acid leached nitrogen (WAEF-N) > ion exchange nitrogen (IEF-N). The inorganic phosphorus included the highest proportion of metal oxide bound phosphorus (NaOH-P), followed by calcium bound phosphorus (HCl-P). The proportion of reduced phosphorus (BD-P) was even lower, and the proportion of weakly adsorbed phosphorus (NH4Cl-P) was the lowest. The results of single factor pollution index showed that the sediment nitrogen in the study area mainly caused moderate pollution and phosphorus mainly caused light pollution. By contrast, the results of the bioavailability index method indicated that nitrogen mainly caused light pollution, and phosphorus mainly caused clean pollution in sediments. Combined with the characteristics of social economy and environment in the study area, it can be inferred that the bioavailability index method based on comprehensive evaluation of total amount and morphology can better characterize the spatial change and ecological risk of nitrogen and phosphorus in sediments.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Sedimentos Geológicos , Nitrógeno/análisis , Fósforo/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
9.
Ecotoxicol Environ Saf ; 208: 111675, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396007

RESUMEN

Metal bioavailability controls its behaviors in soil-plant system, especially involved in biochar amendment. This study compared a rhizospheric pore-water extraction against a BCR sequential extraction method to understand cadmium (Cd) bioavailability in two typical Chinese soils. Soils were spiked with five levels of Cd (CdCl2) and remediated with 3% corn-straw derived biochar. After 60 days of lettuce growth, Cd accumulation and enzyme activities in tissues were analyzed. Results showed that biochar increased soil properties (pH, CEC and SOM) compared to un-amended soils, but decreased contents of bioavailable Cd in soil pore-water (Cdpore-water) and BCR extracted Cd (CdFi+Fii). Contents of Cdpore-water were lower in yellow-brown soils than that in red soils. Pearson analysis showed that bioavailable Cd is negatively correlated with soil pH and CEC (p < 0.05). Cd accumulation in lettuce roots and leaves both were decreased by biochar addition, and the established linear equations proved that soil Cdpore-water is the best predictor for Cd accumulation in lettuce roots (r2 = 0.964) and in leaves (r2 = 0.953), followed by CdFi+Fii. Transfer factor (TF) values of Cd from roots to leaves were lower than 1, and slightly better correlated with soil Cdpore-water (r = -0.674, p < 0.01) than CdFi+Fii (r = -0.615, p < 0.01). Aggregated boosted tree (ABT) analyses indicated that soil properties together with Cdpore-water contribute more than 50% to root enzyme activities. Collectively, soil Cdpore-water is a promising predictor of Cd bioavailability, accumulation and toxicity in soil-plant system with biochar addition.


Asunto(s)
Bioacumulación/efectos de los fármacos , Cadmio/toxicidad , Carbón Orgánico/química , Lactuca/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Disponibilidad Biológica , Transporte Biológico , Cadmio/metabolismo , Lactuca/metabolismo , Modelos Teóricos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Tallos de la Planta/química , Rizosfera , Suelo/química , Contaminantes del Suelo/metabolismo , Agua/química , Zea mays/química
10.
Artículo en Inglés | MEDLINE | ID: mdl-32785126

RESUMEN

This study explored the spatial distribution of phosphorus fractions in river sediments and analyzed the relationship between different phosphorus fractions and their environmental influence on the sediments within different watersheds in Eastern China. River sediments from two inflow watersheds (Hongze and Tiaoxi) to Hongze and Taihu Lake in Eastern China were analyzed by the sequential extraction procedure. Five fractions of sedimentary phosphorus, including freely sorbed phosphorus (NH4Cl-P), redox-sensitive phosphorus (BD-P), bound phosphorus metal oxide (NaOH-P), bound phosphorus calcium (HCl-P), and residual phosphorus (Res-P) were all analyzed. The orders of rankings for the P fractions of the rivers Anhe and Suihe were HCl-P > NaOH-P > BD-P > NH4Cl-P and HCl-P > BD-P > NaOH-P > NH4Cl-P, respectively. For the rank order of the Hongze watershed, HCl-P was higher while the NH4Cl-P contents were significantly lower. The rank order for the Dongtiaoxi River was NaOH-P > HCl-P > BD-P > NH4Cl-P, and that of Xitiaoxi River was NaOH-P > BD-P > HCl-P > NH4Cl-P. Compared with the phosphorus forms of the Tiaoxi watershed, NaOH-P contents were significantly higher compared to HCl-P, which was significantly higher in the Hongze watershed. In comparison, NH4Cl-P contents were significantly lower in both. Variations may be attributed to differential discharge of the P form in the watershed due to land-use changes and urban river ambient conditions.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Fósforo/análisis , Contaminantes Químicos del Agua/análisis
11.
Huan Jing Ke Xue ; 41(2): 914-921, 2020 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-32608753

RESUMEN

Biochar, as a new environmentally friendly material, has been used to improve soil quality and for pollution remediation. Biochar input has a significant impact on available nutrients in the soil. Based on the different land use types (forestland, grassland, cultivated land, and barren land) in the riparian zone of Taihu Lake, the effects of biochar application on the available content of nutrients in different land use types of soil were compared, and the dynamics of nutrient change was also discussed. Results show that the addition of biochar can significantly affect the available nutrient content in riparian soil, however the influential degrees for carbon, nitrogen, and phosphorus were different. After the input of biochar, dissolved organic carbon in riparian soils showed a clear downward trend, while the available nitrogen increased slightly, and the available phosphorus increased significantly. For woodland, grassland, arable land and wasteland soils, the contents of dissolved organic carbon decreased by 33.3%, 27.4%, 29.5%, and 51.4%, while the contents of available nitrogen increased by 10.8%, 18.2%, 16.4%, and 15.2%, and the contents of available phosphorus increased by 40.0%, 50.2%, 34.0%, and 43.6%, respectively. Compared with the concentrations between the control group soil (CK) and the biochar additive group soil (BC), the concentrations of dissolved organic carbon and available phosphorus exhibited large differences between the two groups regarding available nitrogen concentrations. Among the four types of riparian soils, the effects of biochar on the availability of different nutrients were different.

12.
Environ Monit Assess ; 192(6): 351, 2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32388827

RESUMEN

Nitrogen is considered an essential nutrient element limiting water productivity, and its distribution in sediments directly affects its release potential. This study aimed to analyse the spatial characteristics, distribution, and influence of nitrogen forms in two different river catchments situated in eastern China. Using sequential extraction methods, the study divided sediment nitrogen into four forms, namely, an ion-exchangeable form (IEF-N), weak acid-extractable form (WAEF-N), strong alkali-extractable form (SAEF-N), and strong oxidant-extractable form (SOEF-N). The results for the two catchments showed significant differences in the physicochemical properties as well as variations in space. The mean proportion of total transferable nitrogen (TTN) in the Anhe, Suihe, Dongtiaoxi, and Xitiaoxi rivers accounted for 50.64%, 32.87%, 34.63%, and 40.45%, respectively. The results also revealed a higher total TTN in the Hongze watershed than in the Tiaoxi watershed. The order of mean TTN in sediments from the Hongze watershed was SOEF-N > SAEF-N > IEF-N > WAEF-N, whereas that for the Tiaoxi watershed was SOEF-N > SAEF-N > WAEF-N > IEF-N. The distribution of nitrogen forms in the sediments was significantly impacted by the sediment composition and environmental factors, as shown by correlation and redundancy analysis (RDA).


Asunto(s)
Monitoreo del Ambiente , Nitrógeno , Ríos , Contaminantes Químicos del Agua , China , Sedimentos Geológicos
13.
Environ Monit Assess ; 192(5): 309, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32328811

RESUMEN

The distribution and composition of organic pollutants in sediment are affected by the source and regional environment. To understand the characteristics and risk of polybrominated diphenyl ethers (PBDEs) in the area around Taihu Lake, composite sediment samples (n = 41) were collected in rivers around Taihu Lake to explore the level, spatial distribution, and source of PBDEs. The results showed that the most abundant BDE congener in river sediment was BDE209, followed by BDE99 and BDE47, with median values of 48.7, 2.17, and 1.52 ng g-1, respectively. Concentrations of PBDEs in sediments from northern rivers were significantly higher than those from other areas, but the overall risk was at a moderate-lower level compared with research results in other references. Results of principle component analysis (PCA) and source characteristics analysis revealed that most of PBDEs in river sediments around Taihu Lake were mixture of multiple sources, which mainly originated from atmospheric deposition, industrial wastewater, and municipal sewage. TOC showed good correlations with most PBDEs, which implied that PBDE components were influenced by sediment organic matter. Meanwhile, the risk of PBDEs in river sediments in this study area is a moderate-lower level.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Éteres Difenilos Halogenados , Medición de Riesgo , Ríos , China , Sedimentos Geológicos/química , Éteres Difenilos Halogenados/análisis , Contaminantes Químicos del Agua/análisis
14.
Sci Total Environ ; 726: 138562, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32315855

RESUMEN

Knowledge gap exists to understand the soil CO2 emission and microbial group response to substrates of whole plant residues and derived biochar. We used 13C-labelled substrates (rice straw, roots and biochar) to track influences of their decomposition on soil priming effect (PE) and phospholipid fatty acid (PLFA) composition during one-year incubation. Organic substrates at 1% (w/w) level increased soil pH, available nitrogen (AN) and available phosphorus (AP), especially during the first 45 days of incubation. After incubation, 44% of the added straw was mineralized to 13CO2, followed by roots (~35%) and biochar (~5%). Straw and roots amendment caused positive PE during 4-360 day of the incubation, where a lowest value of 41.9 mg C kg-1 was observed. Biochar amendment caused negative PE during 56-150 day of the incubation, where a largest value of -99.0 mg C kg-1 was observed. Analysis of 13C-labelled PLFA enabled the differentiation of microbial groups during substrates utilization. Gram positive bacteria (G+) and general bacteria groups were dominated in co-metabolizing both the native soil organic carbon (SOC) and substrates after straw and roots amendment. Gram negative bacteria (G-), especially identified by PLFA biomarkers cy17:0 and cy19:0, preferentially utilizes the 13C-labelled biochar but not promoting soil priming effect. Soil pH, SOC, AN and AP all explained changes of total and 13C-labelled PLFA contents (>75%, p < .05). Evidences showed that biochar is best in sequestering soil C pool, followed by straw and roots, and soil microbial groups in utilization of organic substances mediated SOC mineralization.


Asunto(s)
Microbiota , Oryza , Carbono , Carbón Orgánico , Suelo , Microbiología del Suelo
15.
Artículo en Inglés | MEDLINE | ID: mdl-31963865

RESUMEN

In this study, the characteristics and distribution of the organic phosphorus (Po) fractions in the surface sediments of seven inflow rivers around Hongze Lake in China were analyzed with a soil Po fraction method, as used by Ivanoff. The relationships between the Po fractions and physiochemical features of sediments were also discussed. The results showed that, the sediments of the rivers had been moderately pollution with certain ecological risk effects except the Waste Yellow River. The relative contribution order of the Po fractions in the sediments was residual Po > HCl-Po > fulvic acid-Po > humic acid-Po > labile organic phosphorus (LOP). Moderately labile organic phosphorus (MLOP) was the main part of the Po forms in the whole sediments. The risk of phosphorus released from river sediments was the highest in the western region, followed by the southwestern region, and finally the northwestern region. There were significant correlations between Po forms and total phosphorus (TP), inorganic phosphorus (Pi), and Po. Non labile organic phosphorus (NLOP) had the strongest correlation with TP. The distribution of Po forms in each region was different due to the impact of human activities, industrial and agricultural production and the land types; the heaver polluted sediments with higher Po fractions. It is suggested that most of the sediments of the inflow rivers in the regions have certain ecological risk effects and P of them have an important contributions on the eutrophication of Hongze Lake. Po forms can provide a reliable theoretical basis for dealing with the change of water quality and should be paid more attention in the lake eutrophication investigation. There was reciprocal transformation between different Po forms, especially non-bioavailable fraction can change into bio-available ones. The results can provide a basis for the earth cycle of phosphorus and a new perspective of eutrophication control of shallow lakes.


Asunto(s)
Sedimentos Geológicos/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Benzopiranos/análisis , China , Monitoreo del Ambiente , Eutrofización , Sustancias Húmicas/análisis , Lagos , Ríos/química
16.
Ecotoxicol Environ Saf ; 189: 110045, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31816499

RESUMEN

Phytotoxicity of cadmium (Cd) and its trophic transfer along a terrestrial food chain have been extensively investigated. However, few studies focused on the role of amendments on the trophic transfer of Cd and related mineral nutrients. In a 60-day pot experiment, soil Cd availability, accumulation of Cd, mineral nutrients (Ca and Si) in lettuce, and subsequent trophic transfer along the lettuce-snail system were investigated with or without 3% (w/w) soil amendment (biochar or micro-hydroxyapatite, µHAP). Soil CaCl2 extractable Cd (CdCaCl2) contents decreased by both amendments. µHAP amended soil increased the Freundlich sorption capacity of Cd2+ to a greater extent (15.9 mmol/kg) than biochar (12.6 mmol/kg). Cd, Ca and Si accumulation in lettuce tissues (roots and shoots) varied with amendment species and soil Cd levels. Linear regression analysis showed that root Cd contents are negatively correlated with root Ca and Si contents (r2 = 0.96, p < 0.05). But no significant correlation between shoot Cd and lettuce Ca and Si contents was found (p > 0.05). After 15 days snail feeding, nearly 90% content of Cd was found in snail viscera, while nearly 95% content of Ca was found in snail shells. Contents of Si distributed equally in snail tissues. Biomagnification of Cd, Ca and Si (TF > 1) was found in lettuce shoot - snail viscera system. Opposite tendency of TF variation between Cd and nutrient elements (Ca and Si) from shoots to snail tissues indicated that µHAP, rather than biochar, amendment is applicable to remediate soil Cd contamination in our study.


Asunto(s)
Cadmio/análisis , Carbón Orgánico/química , Lactuca/efectos de los fármacos , Minerales/metabolismo , Contaminantes del Suelo/análisis , Suelo/química , Animales , Bioacumulación , Cadmio/metabolismo , Calcio/metabolismo , Cadena Alimentaria , Lactuca/metabolismo , Silicio/metabolismo , Caracoles/efectos de los fármacos , Caracoles/metabolismo , Contaminantes del Suelo/metabolismo
17.
Huan Jing Ke Xue ; 40(5): 2186-2193, 2019 May 08.
Artículo en Chino | MEDLINE | ID: mdl-31087855

RESUMEN

In order to explore the effect of land use pattern on phosphorus distribution and the potential release capacity of stream sediment in the upper Minjiang River, this paper presented organic phosphorus forms and their spatial distribution characteristics of sediments in the upper Minjiang River by using the IVANOFF method and discussing the effects of physicochemical properties of sediments on the distribution of organic phosphorus forms. The results show that:①nitrogen and phosphorus contents of sediments in Jianxi and Shaxi catchments are higher than those in the Futunxi catchment, probably related to the large number of farmland runoff and municipal sewage near the Jianxi and Shaxi catchments and the large forest area around the Futunxi catchment;②contents in the sediments from three catchments and TP contents in the sediments from Jianxi and Futunxi catchments showed the order of upper reaches < middle reaches < lower reaches, which may be caused by the mountainous and forested areas in the upper reaches and the intensive human activities in the middle and lower reaches;③nitrogen phosphorus in sediments of the three catchments were mainly non-active organic phosphorus, which indicated that upper reaches of the Minjiang river were generally less affected by external pollution, and the relative proportion of organic phosphorus in the sediments of different catchments was relatively large, while the change in different sections of the same river was relatively small;④physicochemical properties of sediments had a significant impact on the morphology and distribution of organic phosphorus, among which the effects of organic matter, TP, and TN were the most obvious, but the effects on sediments in different river basins were different. Therefore, to protect the water quality of the upper Minjiang River, it is necessary to strengthen the control of the living and agricultural pollution sources near the catchments.

18.
Sci Total Environ ; 649: 801-807, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30176490

RESUMEN

Cadmium (Cd) trophic transfer along the soil-lettuce-snail food chain was investigated using the root bags-based pot experiments. Two amendments (corn straw biochar and micro-hydroxyapatite (µHAP)) were investigated on Cd (0, 2.5, and 5 mg/kg soil) availability in soils, chemical distribution in plant cells and accumulation in snails. After 60 days, both the CaCl2 extractable Cd in rhizosphere soil (CdCaCl2,rhizo) and Cd accumulation in lettuce decreased with amendments addition. Biochar had a great capacity to reduce both Cd contents and toxicity-sensitive associated Cd (CdFi+Fii) percentages in lettuce roots at 2.5 mg/kg Cd contaminated soil; while µHAP generates a higher reduction in both Cd contents and chain transfer associated Cd (CdFi+Fii+Fiii) percentages in lettuce shoots at 5 mg/kg Cd contaminated soil. Linear regression showed that both contents of root CdFi+Fii and shoot CdFi+Fii+Fiii are better correlated with the CdCaCl2,rhizo (R2 > 0.70, p < 0.01). After 15 days feeding, almost 90% content of Cd accumulated in snail viscera. µHAP had a higher reduction in snail soft tissues Cd accumulation than biochar. Distributions of Cd in snail tissues are significantly correlated with CdFi+Fii+Fiii in shoots (viscera R2 = 0.835; soft tissue R2 = 0.771). Established quantitative relationships could be used to predict the bioavailability and transfer of Cd in terrestrial food chain in the presence of amendments.


Asunto(s)
Cloruro de Cadmio/metabolismo , Cadmio/metabolismo , Cadena Alimentaria , Lactuca/metabolismo , Caracoles/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Animales , Cadmio/análisis , Cloruro de Cadmio/análisis , Lactuca/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Contaminantes del Suelo/análisis
19.
Artículo en Inglés | MEDLINE | ID: mdl-30404179

RESUMEN

The environmental risk of potentially toxic metals in tailing soils is of universal concern. We conducted a 3-month pot experiment to research the distribution and variations of potentially toxic metals (PTMs), and the translocation and accumulation capability of these metals (Cr, Ni, Mn, Cu, Zu) in natural plants for three Fe/Mg tailing soils (serpentine-type, olivine-type and magnetite-type) with growth of a grass plant-Imperata cylindrica. We used comparative analysis, regression analysis and correlation analysis to process relevant experimental data. Results showed the rhizosphere tailing soils decreased from 3.70% to 16.8%, compared to the bulk soils, after growth of Imperata cylindrica, and the acid soluble fraction of Mn, Cu and Zn increased significantly. Cu and Zn were more bioavailable than other PTMs, especially for serpentine-type tailing soils. Linear regression analysis indicated that non-residual fractions showed different effects on metal concentrations of Imperata cylindrica. The non-residual metal fractions of serpentine-type and olivine-type tailing soils showed better correlations with metal concentrations in grass plants than those of magnetite-type tailing soils. We found that the chemical compositions of tailing soils showed remarkable effects on Ni and Mn compared with other elements, especially Mg and Al. Overall, the grass plant can alter the metal distribution, enhance metal bioavailability and promote land use of Fe/Mg tailing soils.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados/análisis , Minería , Contaminantes del Suelo/análisis , Suelo/química , Biodegradación Ambiental , Disponibilidad Biológica , Residuos Industriales/análisis , Metales Pesados/metabolismo , Poaceae/metabolismo , Contaminantes del Suelo/metabolismo
20.
Ecotoxicol Environ Saf ; 165: 555-563, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30236917

RESUMEN

The study evaluated source apportionment of heavy metals in vegetable samples from the potential sources of fertilizer, water and soil samples collected along the Changjiang River delta in China. The results showed that 25.72% of vegetable samples (Brassica chinensis L.) containing Pb, and Cd, Cu, Hg and Zn at relatively serious levels were from soil. Combined with principle component analysis (PCA) and cluster analysis (CA), the results of the spatial distribution of heavy metals in different environmental media indicated that fertilizer, water and soil were the main sources of heavy metals in vegetables. The results of multivariate linear regression (MLR) using partition indexes (P) showed that fertilizer contributed to 38.5%, 40.56%, 46.01%, 53.34% and 65.25% of As, Cd, Cu, Pb and Zn contents in vegetables, respectively. In contrast, 44.58% of As, 32.57% of Hg and 32.83% of Pb in vegetables came from soil and 42.78% of Cd and 66.97% of Hg contents in vegetables came from the irrigation water. The results of PCA and CA verified that MLR using P was suitable for determining source apportionment in a vegetable. A health risk assessment was performed; As, Cd and Pb contributed to more than 75% of the total hazard quotient (THQ) values and total carcinogenic risk values (Risktotal) for adults and children through oral ingestion. More than 70% of the estimated THQ and Risktotal is contributed by water and fertilizer. Therefore, it is necessary to increase efforts in screening limits/levels of heavy metals in fertilizer and irrigation water and prioritize appropriate pollution management strategies.


Asunto(s)
Fertilizantes/toxicidad , Metales Pesados/toxicidad , Medición de Riesgo , Contaminantes del Suelo/toxicidad , Verduras/química , Adulto , Riego Agrícola , Niño , China , Análisis por Conglomerados , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Fertilizantes/análisis , Humanos , Modelos Lineales , Metales Pesados/análisis , Análisis Multivariante , Análisis de Componente Principal , Análisis de Regresión , Ríos/química , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA