Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(13): 16145-16151, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38515379

RESUMEN

Artificial superlattice films made of Pb(Zr0.4Ti0.6)O3 and Pb(Zr0.6Ti0.4)O3 were investigated for their polarization states and piezoelectric properties theoretically and experimentally in this study. The developed theory predicts nontrivial polarization along neither [001] nor [111] directions in (111)-epitaxial monodomain superlattice films with uniform compressive strain. Such films were achieved via pulsed laser deposition. When the layer thickness is reduced to 3 nm, d33 becomes 128 ± 3.8 pm/V at 100 kV/cm and 71.3 ± 2.83 pm/V at 600 kV/cm, comparable to that of (111)-oriented Pb(Zr0.4Ti0.6)O3 or Pb(Zr0.6Ti0.4)O3 bulks and clearly exceeding that of the typical clamped films. The measurement agrees with the theoretical analysis, which reveals that the enhanced piezoelectricity is due to rotation of the nontrivial polarization. Furthermore, the theoretical study predicts an even larger d33 exceeding 300 pm/V for specific parameters in superlattice films with uniform tensile strain, which is promising for applications of microelectromechanical systems.

2.
Nano Lett ; 15(12): 8049-55, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26555142

RESUMEN

Use of ferroelectric domain-walls in future electronics requires that they are stable, rewritable conducting channels. Here we demonstrate nonthermally activated metallic-like conduction in nominally uncharged, bent, rewritable ferroelectric-ferroelastic domain-walls of the ubiquitous ferroelectric Pb(Zr,Ti)O3 using scanning force microscopy down to a temperature of 4 K. New walls created at 4 K by pressure exhibit similar robust and intrinsic conductivity. Atomic resolution electron energy-loss spectroscopy confirms the conductivity confinement at the wall. This work provides a new concept in "domain-wall nanoelectronics".

3.
Nat Commun ; 5: 4677, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25119149

RESUMEN

In the pursuit of ferroic-based (nano)electronics, it is essential to minutely control domain patterns and domain switching. The ability to control domain width, orientation and position is a prerequisite for circuitry based on fine domains. Here, we develop the underlying theory towards growth of ultra-fine domain patterns, substantiate the theory by numerical modelling of practical situations and implement the gained understanding using the most widely applied ferroelectric, Pb(Zr,Ti)O3, demonstrating controlled stripes of 10 nm wide domains that extend in one direction along tens of micrometres. The observed electrical conductivity along these thin domains embedded in the otherwise insulating film confirms their potential for electronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA