Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 53
1.
Pest Manag Sci ; 80(7): 3650-3664, 2024 Jul.
Article En | MEDLINE | ID: mdl-38456499

BACKGROUND: Metaldehyde is a molluscicide commonly used to control Pomacea canaliculate. Its efficacy is significantly impacted by water temperature, although the underlying mechanisms have not been fully explored. RESULTS: In this study, we systematically investigated the temperature effect and molecular mechanisms of metaldehyde on P. canaliculata. The molluscicidal effect at various temperatures indicated that metaldehyde's molluscicidal activity significantly decreases with a drop in temperature. The LC50 value was only 458.8176 mg/L at 10 °C, while it surged to a high of 0.8249 mg/L at 25 °C. The impact of low temperature (10 °C) on metaldehyde's molluscicidal activity was analyzed via transcriptomics. The results revealed that the effect of low temperature primarily influences immunity, lipid synthesis, and oxidative stress. The expression of stress and immune-related genes, such as MANF, HSP70, Cldf7, HSP60, and PclaieFc, significantly increased. Furthermore, we studied the function of five target genes using RNA interference (RNAi) and discovered that Cldf7 and HSP70 could notably affect metaldehyde's molluscicidal effect. The mortality of P. canaliculata increased by 36.17% (72 h) after Cldf7 interference and by 48.90% (72 h) after HSP70 interference. CONCLUSION: Our findings demonstrate that low temperature can induce the extensive expression of the Cldf7 and HSP70 genes, resulting in a substantial reduction in metaldehyde's molluscicidal activity. © 2024 Society of Chemical Industry.


Cold Temperature , Molluscacides , Animals , Molluscacides/pharmacology , Gastropoda/drug effects , Gastropoda/genetics , Acetaldehyde/analogs & derivatives , Acetaldehyde/pharmacology
2.
Chempluschem ; 89(6): e202300676, 2024 Jun.
Article En | MEDLINE | ID: mdl-38414152

Ent-kaurane diterpenes are a large group of natural products, with more than 1,000 compounds since their discovery. Due to their excellent biological activities and complex polycyclic structures, these compounds have attracted organic synthesis chemists around the world to be devoted to achieve their total synthesis. At present, the isolated C-20-oxygenated ent-kaurane diterpenes are the most abundant of these natural products, reaching more than 350 in number. However, only total syntheses of 3,20-epoxy, 7,20-epoxy and 19,20-lactone ent-kaurane diterpenes have been reported. In this review, we elaborate the synthesis of these three types of C-20 oxygenated ent-kaurane natural products, discuss these synthetic strategies in detail, and provide good guidance and reference for the synthesis of other C-20 oxygenated compounds.


Diterpenes, Kaurane , Diterpenes, Kaurane/chemistry , Diterpenes, Kaurane/chemical synthesis , Oxygen/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Molecular Structure
3.
Small ; 20(17): e2309593, 2024 Apr.
Article En | MEDLINE | ID: mdl-38126566

The clinical application of oncology therapy is hampered by high glutathione concentrations, hypoxia, and inefficient activation of cell death mechanisms in cancer cells. In this study, Fe and Mo bimetallic sulfide nanomaterial (FeS2@MoS2) based on metal-organic framework structure is rationally prepared with peroxidase (POD)-, catalase (CAT)-, superoxide dismutase (SOD)-like activities and glutathione depletion ability, which can confer versatility for treating tumors and mending wounds. In the lesion area, FeS2@MoS2 with SOD-like activity can facilitate the transformation of superoxide anions (O2 -) to hydrogen peroxide (H2O2), and then the resulting H2O2 serves as a substrate for the Fenton reaction with FMS to produce highly toxic hydroxyl radicals (∙OH). Simultaneously, FeS2@MoS2 has an ability to deplete glutathione (GSH) and catalyze the decomposition of nicotinamide adenine dinucleotide phosphate (NADPH) to curb the regeneration of GSH from the source. Thus it can realize effective tumor elimination through synergistic apoptosis-ferroptosis strategy. Based on the alteration of the H2O2 system, free radical production, glutathione depletion and the alleviation of hypoxia in the tumor microenvironment, FeS2@MoS2 NPS can not only significantly inhibit tumors in vivo and in vitro, but also inhibit multidrug-resistant bacteria and hasten wound healing. It may open the door to the development of cascade nanoplatforms for effective tumor treatment and overcoming wound infection.


Antineoplastic Agents , Metal-Organic Frameworks , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/chemistry , Cell Line, Tumor , Mice , Glutathione/metabolism , Iron/chemistry , Iron/metabolism , Apoptosis/drug effects , Molybdenum/chemistry , Molybdenum/pharmacology , Nanostructures/chemistry , Ferroptosis/drug effects
4.
Ecotoxicol Environ Saf ; 259: 115064, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-37229873

Pomacea canaliculata is a malignant invasive aquatic snail found worldwide, and niclosamide (NS) is one of the primary agents used for its control. NS applied to water will exist in non-lethal concentrations for some time due to degradation or water exchange, thus resulting in sublethal effects on environmental organisms. To identify sublethal effects of NS on Pomacea canaliculata, we studied the aspects of histopathology, oxygen-nitrogen ratio (RO∶N), enzyme activity determination, and gene expression. After LC30 NS treatment (0.310 g/L), many muscle fibers of the feet degenerated and some acinar vesicles of the hepatopancreas collapsed and dissolved. The oxygen-nitrogen ratio (RO∶N) decreased significantly from 15.0494 to 11.5183, indicating that NS had changed the metabolic mode of Pomacea canaliculata and shifted it primarily to protein catabolism. Transcriptome analysis identified the sublethal effects of LC30 NS on the snails at the transcriptional level. 386, 322, and 583 differentially expressed genes (DEGs) were identified in the hepatopancreas, gills, and feet, respectively. GO (Gene Ontology) functional analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotations showed that DEGs in the hepatopancreas were mainly enriched for sugar metabolism, protein biosynthesis, immune response, and amino acid metabolism functional categories; DEGs in the gills were mainly enriched for ion transport and amino acid metabolism; DEGs in the feet were mainly enriched for transmembrane transport and inositol biosynthesis. In the future, we will perform functional validation of key genes to further explain the molecular mechanism of sublethal effects.


Food , Niclosamide , Animals , Niclosamide/toxicity , Carbohydrate Metabolism , Water , Amino Acids
5.
Bioorg Chem ; 135: 106501, 2023 06.
Article En | MEDLINE | ID: mdl-37015152

As one of the most common malignancies in female dogs, no drugs have been developed specifically for the treatment of canine mammary carcinoma. In our previous study, a series of diterpenoid alkaloids derivatives were synthesized and exhibited good anti-proliferative activity in vitro against both normal and adriamycin-resistant human breast cancer cells lines. In this study, a series of structurally diverse aconitine-type alkaloids derivatives were also synthesized basing on the minimal modification principle, by modifying on A-ring, C-ring, D-ring, N-atom or salt formation on aconitine skeleton. Their anti-proliferative effects and mechanism on canine mammary cancer cells were investigated, exhibiting the importance of the substitution at A ring, the long chain ester at the C8, the hydroxyl group at the C13, the phenyl ring at the C14 and the N-ethyl group, while the methoxy group at the C1 and C16 showed little effect on the activity. The results of the proliferation, apoptosis and ultrastructure tests of the treated canine mammary carcinoma cells referred that the representative compound, aconitine linoleate (25) could block the cell cycle of canine mammary carcinoma cells in the G0/G1 phase, and exhibit the anti-proliferative effect by inducing apoptosis.


Alkaloids , Breast Neoplasms , Carcinoma , Diterpenes , Dogs , Animals , Female , Humans , Aconitine/pharmacology , Aconitine/chemistry , Breast Neoplasms/drug therapy , Alkaloids/pharmacology , Alkaloids/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry
6.
Pestic Biochem Physiol ; 192: 105424, 2023 May.
Article En | MEDLINE | ID: mdl-37105626

Virtual screening is an efficient way to obtain new drugs, which has become an important method in the field of pesticide research. Protein neural wiskott-Aldrich syndrome isoform X1 (PcnWAS) is a target protein that exists in the haemocytes of Pomacea canaliculata, and in this study, isothermal titration calorimetry (ITC) was used to evaluate the binding ability of protein PcnWAS and pedunsaponin A in vitro. Furthermore, it was set as a receptor, and the design of molluscicidal compounds based on protein PcnWAS was carried out. Results showed that, pedunsaponin A had high binding capacity with protein PcnWAS, and the binding constant (Ka) was 2.98 ± 1.74 × 10-4. A new potential molluscicidal compound thionicotinamide-adenine-dinucleotide (thionicotinamide-DPN) was obtained by virtual screening. In-vivo bioassay indicated that, the LC50 value was 57.7102 mg/L (72 h), and the oxygen consumption rate, ammonia excretion rate, oxygen nitrogen ratio and hemocyanin content of P. canaliculata declined after 60 mg/L thionicotinamide-DPN treated. Furthermore, the treatment of thionicotinamide-DPN also decreased gene expression level of protein PcnWAS. The results of ITC test showed that thionicotinamide-DPN can bind with protein PcnWAS efficiently, which means that it has the same target with pedunsaponin A when interacted with P. canaliculata. All the above results lay a foundation for the development of new molluscicides.


Molluscacides , Saponins , Triterpenes , Animals , Snails , Molluscacides/pharmacology , Proteins
7.
Molecules ; 28(7)2023 Mar 28.
Article En | MEDLINE | ID: mdl-37049765

Allylation of N-unsubstituted isatin N,N'-cyclic azomethine imines with Morita-Baylis-Hillman carbonates in the presence of 1-10 mol% DABCO in DCM at room temperature, rapidly gave N-allylated and N, ß-diallylated isatin N,N'-cyclic azomethine imine 1,3-dipoles in moderate to high yields. The reaction features mild reaction conditions, easily practical operation, and short reaction times in most cases. Furthermore, the alkylated products were transformed into novel bicyclic spiropyrrolidine oxoindole derivatives through the [3+2] or [3+3]-cycloaddition with maleimides or Knoevenagel adducts.

8.
Molecules ; 28(3)2023 Jan 19.
Article En | MEDLINE | ID: mdl-36770700

The synthesis of dicyclic spiropyridazine oxoindole derivatives by using [3+3]-cycloaddition of N-unsubstituted isatin N,N'-cyclic azomethine imine 1,3-dipoles was reported. The products bearing two consecutive stereocenters, including spiroquaternary stereocenters in one ring structure, can be effectively obtained in moderate to excellent yields (20-93%) and low to moderate diastereoselectivities (1:9-10:1 dr). The synthesized compounds (>35 examples) were characterized by single-crystal XRD, FTIR, NMR, and mass spectral analysis.

9.
J Sci Food Agric ; 103(1): 328-338, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-35871477

BACKGROUND: This study characterized an acidic polysaccharide (OHC-LDPA) isolated from the medicinal and edible homologous plant Onosma hookeri Clarke var. longiforum Duthie. The structure of OHC-LDPA was elucidated based on the analysis of infrared, one-/two-dimensional nuclear magnetic resonance, and gas chromatography-mass spectrometry data. The immunostimulatory effects of OHC-LDPA were identified by both in vitro and in vivo models. RESULTS: The structure of OHC-LDPA was elucidated as a typical pectin polysaccharide, consisting of galacturonic acid, galactose, arabinose, and rhamnose as the primary sugars, with linear galacturonic acid as the main chain and arabinogalacturonic acid as the main branched components. OHC-LDPA could significantly stimulate the proliferation and phagocytosis of RAW264.7 macrophages and the release of nitric oxide in vitro. Also, it could accelerate the recovery of spleen and thymus indexes, enhance the splenic lymphocyte proliferation responses, and restore the levels of interleukin-2, interleukin-10, interferon-γ, and immunoglobulin G in the serum in a cyclophosphamide-induced immunosuppressed-mice model. In addition, OHC-LDPA could restore the intestinal mucosal immunity and reduce the inflammatory damage. CONCLUSION: OHC-LDPA could improve the immunity both in vitro and in vivo and could be used as a potential immunostimulant agent. © 2022 Society of Chemical Industry.


Boraginaceae , Polysaccharides , Mice , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Hexuronic Acids , Phagocytosis , RAW 264.7 Cells
10.
Pestic Biochem Physiol ; 188: 105243, 2022 Nov.
Article En | MEDLINE | ID: mdl-36464353

Previous studies have found that temperature influences molluscicidal the activity of pedunsaponin A (PA), which may be related to the expression of Hsp70, a cold-tolerance gene in Pomacea canaliculata. We determined the temperature effect of PA and the relationship between Hsp70 and temperature sensitivity of P. canaliculata poisoned by PA. Toxicity tests resulted in LC50 values of 17.7239 mg⋅L-1 at 10 °C, which decreased to 2.5774 mg⋅L-1 at 30 °C, implying a positive correlation between toxicity of PA and temperature. After Hsp70 being interfered, the mortality rate of P. canaliculata treated with PA for 72 h was 70%, which was significantly higher than that of snails treated with PA for 72 h without interfering (56.7%). Meanwhile, immune enzyme activities such as SOD, ACP and AKP were significantly increased in the interfered group and expression level of PcAdv in the gill was also significantly increased. These results suggest that deletion of Hsp70 promotes the activation of some immune enzymes of P. canaliculata and elevates the content of target proteins to cope with the dual stresses of low temperatures and molluscicides. These findings indicate that the Hsp70 plays an important role in influencing the temperature sensitivity of P. canaliculata when treated with PA.


Gastropoda , Molluscacides , Animals , Temperature , HSP70 Heat-Shock Proteins/genetics , Cold Temperature
11.
Front Pharmacol ; 13: 953284, 2022.
Article En | MEDLINE | ID: mdl-36071830

Octadecanoic acid-3,4-tetrahydrofuran diester is a compound with acaricidal activity isolated and extracted from neem oil. In this study, a series of derivatives were obtained by structural modification of octadecanoic acid-3,4-tetrahydrofuran diester. The acaricidal activity of these derivatives indicated that introduction of benzyloxy substitution at the 2-position of the furan ring and the formation of a benzoate at the 3,4-position of the furan ring (benzoic acid-2-benzyloxy-3,4-tetrahydrofuran diester) could enhance the acaricidal activity. At concentration of 20, 10, and 5 mg/ml, the median lethal time (LT50) values of benzoic acid-2-benzyloxy-3,4-tetrahydrofuran diester were 16.138, 47.274, and 108.122 min, respectively. The LC50 value of benzoic acid-2-benzyloxy-3,4-tetrahydrofuran diester at 60 min was 5.342 mg/ml. Transmission electron microscopy showed that after treatment with benzoic acid-2-benzyloxy-3,4-tetrahydrofuran diester, the body structure of mites was destroyed; dermal organelles were dissolved; nuclear chromatin was ablated. Further, transcriptome sequencing analysis was used to get insight into the acaricidal mechanism of benzoic acid-2-benzyloxy-3,4-tetrahydrofuran diester. The results showed that its acaricidal mechanism is related to interfering "energy metabolism" in S. scabiei, including processes such as citric acid cycle, oxidative phosphorylation pathway and fatty acid metabolism. Additionally, through the activity detection of the mitochondrial complexes of S. scabiei, it was further verified that the acaricidal mechanism of benzoic acid-2-benzyloxy-3,4-tetrahydrofuran diester was related to the energy metabolism system of S. scabiei.

12.
Molecules ; 27(14)2022 Jul 19.
Article En | MEDLINE | ID: mdl-35889462

The separation of chemical components from wild plants to develop new pesticides is a hot topic in current research. To evaluate the antimicrobial effects of metabolites of Ligusticum chuanxiong (CX), we systematically studied the antimicrobial activity of extracts of CX, and the active compounds were isolated, purified and structurally identified. The results of toxicity measurement showed that the extracts of CX had good biological activities against Botrytis cinerea, Sclerotinia sclerotiorum, Alternaria alternata and Pythium aphanidermatum, and the value of EC50 were 130.95, 242.36, 332.73 and 307.29 mg/L, respectively. The results of in vivo determination showed that under the concentration of 1000 mg/L, the control effect of CX extract on Blumeria graminis was more than 40%, and the control effect on Botrytis cinerea was 100%. The antifungal active components of CX were identified as Senkyunolide A and Ligustilide by mass spectrometry and nuclear magnetic resonance. The MIC (minimum inhibitory concentration) value of Senkyunolide A and Ligustilide against Fusarium graminearum were 7.81 and 62.25 mg/L, respectively. As a new botanical fungicide with a brightly exploitative prospect, CX extract has potential research value in the prevention and control of plant diseases.


Drugs, Chinese Herbal , Ligusticum , Antifungal Agents/pharmacology , Botrytis , Drugs, Chinese Herbal/chemistry , Ligusticum/chemistry
13.
Pest Manag Sci ; 78(7): 3098-3107, 2022 Jul.
Article En | MEDLINE | ID: mdl-35439342

Target-protein-based pesticide screening has attracted wide-ranging attention on pesticide science. Pedunsaponin A (PA) is a compound isolated from the root of Pueraria peduncularis, and it has a strong toxic effect on Pomacea canaliculata. Previous studies found that Advlin (PcAdv) and neural Wiskott-Aldrich syndrome isoform X1(PcnWAS) are target proteins of PA when interacted with P. canaliculata. In this study, we modeled the two target proteins through I-Tasser and identified the pharmacophore of PA binding to the two target proteins by molecular docking. Furthermore, through virtual screening, potassium alginate was found to strongly bind to the target proteins in theory. In vivo bioassay showed that, similar to PA treatment, potassium alginate was able to induce typical poisoning symptoms on P. canaliculata, which were characterized by abnormal increase of excreta, weakening of climbing capacity, loss of gill cilia and decrease in hemocyanin content, and even cause death of P. canaliculata with a 13.33% mortality rate under 100 mg L-1 concentration. Furthermore, the treatment of potassium alginate also decreased the gene expression level of PcAdv and PcnWAS. These findings indicate that potassium alginate can affect the living state of P. canaliculata, and that it is feasible to develop new molluscicides based on PcAdv and PcnWAS by virtual screening. © 2022 Society of Chemical Industry.


Gastropoda , Molluscacides , Saponins , Alginates , Animals , Gastropoda/genetics , Molecular Docking Simulation , Triterpenes
14.
Org Lett ; 24(3): 832-836, 2022 01 28.
Article En | MEDLINE | ID: mdl-35043629

The dehydrative mono-/dialkylation reactions of alcohols and ß-ketoacids were realized under arylboronic acid catalysis, furnishing a series of ß-aryl ketones and ß-ketoesters in yields of 15-99%, with CO2 and H2O being the byproducts. In this context, the decarboxylative alkylation reaction occurred to give ß-aryl ketones at 50 °C, while the decarboxylation was suppressed to generate dialkylated ester products at 0 °C. A possible catalytic cycle was proposed based on control experiments.

15.
Pestic Biochem Physiol ; 179: 104963, 2021 Nov.
Article En | MEDLINE | ID: mdl-34802513

Glabridin is a natural plant-derived compound that has been widely used in medicine and cosmetic applications. However, the fungicidal mechanism of glabridin against phytopathogens remains unclear. In this study, we determined the biological activity and physiological effects of glabridin against F. graminearum. Then the differentially expressed proteins of F. graminearum were screened. The EC50 values of glabridin in inhibiting the mycelial growth and conidial germination of F. graminearum were 110.70 mg/L and 40.47 mg/L respectively. Glabridin-induced cell membrane damage was indicated by morphological observations, DiBAC4(3) and PI staining, and measurements of relative conductivity, ergosterol content and respiratory rates. These assays revealed that the integrity of the membrane was destroyed, the content of ergosterol decreased, and the respiratory rate was inhibited. A proteomics analysis showed that 186 proteins were up-regulated and 195 proteins were down-regulated. Mechanically sensitive ion channel proteins related to transmembrane transport and ergosterol biosynthesis ERG4/ERG24, related to ergosterol synthesis were blocked. It is speculated that glabridin acts on ergosterol synthesis-related proteins to destroy the integrity of the cell membrane, resulting in abnormal transmembrane transport and an increased membrane potential. Finally, the morphology of mycelia was seriously deformed, growth and development were inhibited. As a result death was even induced.


Fungicides, Industrial , Fusarium , Isoflavones , Phenols/pharmacology , Plant Diseases
16.
BMC Vet Res ; 17(1): 247, 2021 Jul 18.
Article En | MEDLINE | ID: mdl-34275451

BACKGROUND: Pseudorabies virus (PRV), a member of the Alphaherpesviruses, is one of the most important pathogens that harm the global pig industry. Accumulated evidence indicated that PRV could infect humans under certain circumstances, inducing severe clinical symptoms such as acute human encephalitis. Currently, there are no antiviral drugs to treat PRV infections, and vaccines available only for swine could not provide full protection. Thus, new control measures are urgently needed. RESULTS: In the present study, kaempferol exhibited anti-PRV activity in mice through improving survival rate by 22.22 %, which was higher than acyclovir (Positive control) with the survival rate of 16.67 % at 6 days post infection (dpi); meanwhile, the survival rate was 0 % at 6 dpi in the infected-untreated group. Kaempferol could inhibit the virus replication in the brain, lung, kidney, heart and spleen, especially the viral gene copies were reduced by over 700-fold in the brain, which was further confirmed by immunohistochemical examination. The pathogenic changes induced by PRV infection in these organs were also alleviated. The transcription of the only immediate-early gene IE180 in the brain was significantly inhibited by kaempferol, leading to the decreased transcriptional levels of the early genes (EPO and TK). The expression of latency-associated transcript (LAT) was also inhibited in the brain, which suggested that kaempferol could inhibit PRV latency. Kaempferol-treatment could induce higher levels of IL-1ß, IL-4, IL-6, TNF-α and IFN-γ in the serum at 3 dpi which were then declined to normal levels at 5 dpi. CONCLUSIONS: These results suggested that kaempferol was expected to be a new alternative control measure for PRV infection.


Antiviral Agents/pharmacology , Herpesvirus 1, Suid/drug effects , Kaempferols/pharmacology , Pseudorabies/drug therapy , Acyclovir/pharmacology , Animals , Brain , Gene Expression Regulation, Viral , Genes, Immediate-Early/drug effects , Herpesvirus 1, Suid/genetics , Male , Mice , Pseudorabies/mortality , Pseudorabies/pathology , Virus Replication/drug effects
17.
Bioorg Chem ; 113: 105011, 2021 08.
Article En | MEDLINE | ID: mdl-34091289

In the 21st century, cancer is the major public health problem worldwide. Based on the important roles of protein tyrosine kinase, the accelerated hunt for potent small-molecule tyrosine kinase inhibitors has led to the success of 30 newly inhibitors in this family for the cancer therapy in last five years. In this review, we updated their synthesis methods, and compared the original research routes with the optimized routes for each PTK inhibitor against different target, in order to make an outlook on the future synthesis of potential PTK inhibitors for anticancer therapy.


Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Neoplasms/pathology , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Platelet-Derived Growth Factor/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism
18.
Eur J Med Chem ; 220: 113473, 2021 Aug 05.
Article En | MEDLINE | ID: mdl-33906047

A high incidence of cancer has given rise to the development of more anti-tumor drugs. From 2015 to 2020, fifty-six new small-molecule anticancer drugs, divided into ten categories according to their anti-tumor target activities, have been approved. These include TKIs (30 drugs), MAPK inhibitors (3 drugs), CDK inhibitors (3 drugs), PARP inhibitors (3 drugs), PI3K inhibitors (3 drugs), SMO receptor antagonists (2 drugs), AR antagonists (2 drugs), SSTR inhibitors (2 drugs), IDH inhibitors (2 drugs) and others (6 drugs). Among them, PTK inhibitors (30/56) have led to a paradigm shift in cancer treatment with less toxicity and more potency. Each of their structures, approval statuses, applications, SAR analyses, and original research synthesis routes have been summarized, giving us a more comprehensive map for further efforts to design more specific targeted agents for reducing cancer in the future. We believe this review will help further research of potential antitumor agents in clinical usage.


Antineoplastic Agents/pharmacology , Drug Approval , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Small Molecule Libraries/pharmacology , Antineoplastic Agents/chemistry , Enzyme Inhibitors/chemistry , Humans , Neoplasms/enzymology , Small Molecule Libraries/chemistry
19.
Bioorg Chem ; 109: 104699, 2021 04.
Article En | MEDLINE | ID: mdl-33611138

Aconitine linoleate (11) isolated from the Aconitum sinchiangense W. T. Wang exhibited significant anti-tumor activity. Based on this, a series of novel lipo-diterpenoid alkaloids were synthesized and evaluated for their anticancer activities against MCF-7 and MCF-7/ADR cell lines. Seventeen compounds, including 18-20, 22, 24-32, 36, 39, 41-42 possessed higher anti-proliferative activities (IC50 < 20 µM) against MCF-7 cell lines, which were better than the reference drug etoposide (IC50 = 18.01 ± 1.64 µM), among which compound 24 (IC50 = 4.00 ± 0.30 µM) was found to be the most potent derivative, being 4.5-fold more active than etoposide. Meanwhile, eighteen compounds, including 18-22, 24, 26-32, 36, 38-39, 41-42 presented excellent activities (IC50 < 20 µM) against MCF-7/ADR cell lines, better than etoposide (IC50 = 35.48 ± 0.29 µM) and doxorubicin (IC50 = 67.61 ± 6.5 µM). The most potent compound (19) was 13.5- and 25.7-fold more active than etoposide and doxorubicin against MCF-7/ADR cell lines, respectively. The structure-activity relationship (SAR) studies indicated that the 3-OH, 8-lipo, 14-benzene ring, and nitrogen atom with proper alkaline are crucial elements for anti-proliferative activity of target lipo-diterpenoid compounds. The proper length, the double bonds or di-fluoro-substituted at C-8 fatty acid chain, the para-donating electron group on 14-benzene group, and 13-OH are all favorable for the enhancement of anti-proliferative activities. In conclusion, the introduction of the 8-lipo group into aconitine leads to significant increase of anti-proliferative activity against MCF-7 and MCF-7/ADR cells, which suggests these kinds of lipo-alkaloids are powerful and promising antitumor compounds for breast cancer, especially for drug-resistant breast cancer.


Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type II/metabolism , Diterpene Alkaloids/chemistry , Diterpene Alkaloids/pharmacology , Topoisomerase II Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Breast Neoplasms , Cell Line, Tumor , Cell Survival/drug effects , DNA Topoisomerases, Type II/genetics , Doxorubicin/pharmacology , Drug Design , Etoposide/pharmacology , Female , Humans , Molecular Structure , Structure-Activity Relationship
20.
Ann Transl Med ; 8(20): 1295, 2020 Oct.
Article En | MEDLINE | ID: mdl-33209875

BACKGROUND: In Chinese herbal medicine, Tanshinone IIA (Tan-IIA) is one of the main compounds extracted from Salvia miltiorrhiza Bunge. Tan-IIA has been demonstrated to inhibit the growth of various tumors. However, the detailed molecular and cellular mechanisms of the antitumor effect of Tan-IIA have yet to be fully illuminated. METHODS: A2780 and ID-8 were treated with 0, 1.2, 2.4, 4.8, or 9.6 µg/mL Tan-IIA for 24 hours. Cell counting Kit-8 assay and EdU staining were used to evaluate cell proliferation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and flow cytometry were performed to analyze apoptosis. Western blot was carried out to determine the protein levels. Flow cytometry was used for cell cycle analysis. The levels of mRNA expression were analyzed by real-time polymerase chain reaction. The anti-tumor effect of Tan-IIA was observed in a tumor-bearing mouse model. RESULTS: Tan-IIA inhibited the proliferation of ovarian cancer cells in a dose-dependent manner by inducing G2/M phase arrest. It also down-regulated B-cell lymphoma 2 (Bcl-2) and up-regulated Bcl-2-associated X protein (Bax) in ovarian cancer cells to induce apoptosis, and suppressed cell migration by inhibiting focal adhesion kinase phosphorylation. Tan-IIA significantly reduced vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX2) mRNA expression in ovarian cancer cells. In vivo, Tan-IIA significantly inhibited tumor growth by inducing apoptosis and promoting anti-angiogenesis. CONCLUSIONS: The results of this study shed light on the molecular and cellular mechanisms for the antitumor effect of Tan-IIA.

...