Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
World J Clin Cases ; 9(16): 3796-3813, 2021 Jun 06.
Article En | MEDLINE | ID: mdl-34141737

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is spreading at an alarming rate, and it has created an unprecedented health emergency threatening tens of millions of people worldwide. Previous studies have indicated that SARS-CoV-2 ribonucleic acid could be detected in the feces of patients even after smear-negative respiratory samples. However, demonstration of confirmed fecal-oral transmission has been difficult. Clinical studies have shown an incidence rate of gastrointestinal (GI) symptoms ranging from 2% to 79.1% in patients with COVID-19. They may precede or accompany respiratory symptoms. The most common GI symptoms included nausea, diarrhea, and abdominal pain. In addition, some patients also had liver injury, pancreatic damage, and even acute mesenteric ischemia/thrombosis. Although the incidence rates reported in different centers were quite different, the digestive system was the clinical component of the COVID-19 section. Studies have shown that angiotensin-converting enzyme 2, the receptor of SARS-CoV-2, was not only expressed in the lungs, but also in the upper esophagus, small intestine, liver, and colon. The possible mechanism of GI symptoms in COVID-19 patients may include direct viral invasion into target cells, dysregulation of angiotensin-converting enzyme 2, immune-mediated tissue injury, and gut dysbiosis caused by microbiota. Additionally, numerous experiences, guidelines, recommendations, and position statements were published or released by different organizations and societies worldwide to optimize the management practice of outpatients, inpatients, and endoscopy in the era of COVID-19. In this review, based on our previous work and relevant literature, we mainly discuss potential fecal-oral transmission, GI manifestations, abdominal imaging findings, relevant pathophysiological mechanisms, and infection control and prevention measures in the time of COVID-19.

2.
Cancer Cell Int ; 19: 44, 2019.
Article En | MEDLINE | ID: mdl-30858761

BACKGROUND: FOXD3 is aberrantly regulated in several tumors, but its underlying mechanisms in ovarian cancer (OC) remains largely unknown. The present study aimed to explore the role and associated mechanisms of FOXD3 in OC. METHODS: Microarray data from GEO was used to analyze differential CpG sites and differentially methylated regions (DMR) in tumor tissues and Illumina 450 genome-wide methylation data was employed. The FOXD3 expression level was determined through qRT-PCR and western blot analysis. Wound healing test, colony formation and flow cytometry assay were utilized to analyze cell migration, proliferation abilities, cell cycle and cell apoptosis, respectively. Finally, the effect of FOXD3 on tumor growth was investigated through in vivo xenograft experiments. RESULTS: GEO data analysis showed that FOXD3 was hypermethylated in OC tissues. Also, qRT-PCR revealed that FOXD3 was low expressed and methylation-specific PCR (MSP) confirmed that the methylation level of FOXD3 was hypermethylated. Combined treatment of 5-aza-2'-deoxycytidine (5-Aza-dC) could synergistically restored FOXD3 expression. Finally, in vitro and in vivo experiments showed that demethylated FOXD3 decreased cell proliferation and migration abilities, and increased the cell apoptosis. In vivo experiment detected that demethylated FOXD3 restrained tumor growth. CONCLUSIONS: FOXD3 could act as a tumor suppressor to inhibit cell proliferation, migration and promote cell apoptosis in OC cells.

3.
Lipids Health Dis ; 16(1): 228, 2017 Dec 02.
Article En | MEDLINE | ID: mdl-29197393

BACKGROUND: A growing number of studies reported the connection between the level of serum ferritin (SFL) and non-alcoholic fatty liver disease (NAFLD). However, such connection was still disputable. The aim of our meta-analysis was to estimate SFL between the groups as below: patients with NAFLD against control group; non-alcoholic steatohepatitis (NASH) patients against control group; non-alcoholic fatty liver (NAFL) patients against a control group and NASH patients vs NAFL patients. METHODS: We screened the studies in PubMed, EMBASE, the Cochrane Database and the Cochrane Central register controlled trials from the beginning to July 10, 2016 to find the studies indicated the connection between SFL and NAFLD (NAFL and/or NASH). Fourteen published studies which evaluate the SFL in NAFLD patients were selected. RESULTS: Higher SFL was noticed in NAFLD patients against control group (standardized mean difference [SMD] 1.01; 95% CI 0.89, 1.13), NASH patients against control group (SMD 1.21; 95% CI 1.00, 1.42), NAFL patients against control group (SMD 0.51; 95% CI 0.24, 0.79) and NASH patients against NAFL patients (SMD 0.63; 95% CI 0.52, 0.75). These results remained unaltered actually after the elimination of studies which were focused on paediatric or adolescent populations. Higher SFL was presented in NAFLD patients against the control group (SMD 1.08; 95% CI 0.95, 1.20) in adults and NASH patients against NAFL patients in adults (SMD 0.74; 95% CI 0.62, 0.87). The connection between SFL and NASH against NAFL group in paediatric or adolescent populations was observed inconsistently (SMD 0.10; 95% CI -0.18, 0.38). CONCLUSIONS: The level of SFL was elevated in patients with NAFLD (NAFL and/or NASH) compared with the controls. Compared with NAFL, The level of SFL was increased in NASH. The result remained unaltered actually after the elimination of studies focused on paediatric or adolescent populations.


Ferritins/blood , Non-alcoholic Fatty Liver Disease/blood , Biomarkers/blood , Case-Control Studies , Humans , Non-alcoholic Fatty Liver Disease/pathology , Severity of Illness Index
4.
Hepatology ; 50(5): 1524-36, 2009 Nov.
Article En | MEDLINE | ID: mdl-19787807

UNLABELLED: Extracellular signal-regulated kinase 1 (ERK1) is a critical part of the mitogen-activated protein kinase signal transduction pathway, which is involved in hepatic fibrosis. However, the effect of down-regulation of ERK1 on hepatic fibrosis has not been reported. Here, we induced hepatic fibrosis in rats with dimethylnitrosamine administration or bile duct ligation. An adenovirus carrying small interfering RNA targeting ERK1 (AdshERK1) was constructed to determine its effect on hepatic fibrosis, as evaluated by histological and immunohistochemical examination. Our results demonstrated that AdshERK1 significantly reduced the expression of ERK1 and suppressed proliferation and levels of fibrosis-related genes in hepatic stellate cells in vitro. More importantly, selective inhibition of ERK1 remarkably attenuated the deposition of the extracellular matrix in fibrotic liver in both fibrosis models. In addition, both hepatocytes and biliary epithelial cells were proven to exert the ability to generate the myofibroblasts depending on the insults of the liver, which were remarkably reduced by AdshERK1. Furthermore, up-regulation of ERK1 paralleled the increased expression of transforming growth factor beta1 (TGF-beta1), vimentin, snail, platelet-derived growth factor-BB (PDGF-BB), bone morphogenetic protein 4 (BMP4), and small mothers against decapentaplegic-1 (p-Smad1), and was in reverse correlation with E-cadherin in the fibrotic liver. Nevertheless, inhibition of ERK1 resulted in the increased level of E-cadherin in parallel with suppression of TGF-beta1, vimentin, snail, PDGF-BB, BMP4, and p-Smad1. Interestingly, AdshERK1 treatment promoted hepatocellular proliferation. CONCLUSION: Our study provides the first evidence for AdshERK1 suppression of hepatic fibrosis through the reversal of epithelial-mesenchymal transition of both hepatocytes and biliary epithelial cells without interference of hepatocellular proliferation. This suggests that ERK1 is implicated in hepatic fibrogenesis and selective inhibition of ERK1 by small interfering RNA may present a novel option for hepatic fibrosis treatment.


Adenoviridae/genetics , Liver Cirrhosis/prevention & control , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction/physiology , Animals , Becaplermin , Bone Morphogenetic Protein 4/metabolism , Cadherins/metabolism , Cell Proliferation , Cells, Cultured , Dimethylnitrosamine/adverse effects , Disease Models, Animal , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Ligation , Liver/metabolism , Liver/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Platelet-Derived Growth Factor/metabolism , Proto-Oncogene Proteins c-sis , Rats , Smad1 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Vimentin/metabolism
5.
Biomed Chromatogr ; 23(11): 1138-44, 2009 Nov.
Article En | MEDLINE | ID: mdl-19492345

A novel method for the determination of ephedra alkaloids (methylephedrine and pseudoephedrine) was developed by electrophoresis capillary (CE) separation and electrochemiluminesence detection (ECL). The use of ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIMBF(4)) improved the detection sensitivity markedly. The conditions for CE separation, ECL detection and effect of ionic liquid were investigated in detail. The two ephedra alkaloids with very similar structures were well separated and detected under the optimum conditions. The limits of detection (signal-to-noise ratio = 3) in standard solution were 1.8 x 10(-8) mol/L for methylephedrine (ME) and 9.2 x 10(-9) mol/L for pseudoephedrine (PSE). The limits of quantitation (signal-to-noise ratio = 10) in human urine samples were 2.6 x 10(-7) mol/L for ME and 3.6 x 10(-7 )mol/L for PSE. The recoveries of two alkaloids at three different concentration levels in human urine samples were between 81.7 and 105.0%. The proposed method was successfully applied to the determination of ME and PSE in human urine and the monitoring of pharmacokinetics for PSE. The proposed method has potential in therapeutic drug monitoring and clinical analysis.


Electrochemistry , Electrophoresis, Capillary/methods , Ephedrine/analogs & derivatives , Luminescent Measurements , Pseudoephedrine/pharmacokinetics , Pseudoephedrine/urine , Bronchodilator Agents/pharmacokinetics , Bronchodilator Agents/urine , Ephedrine/pharmacokinetics , Ephedrine/urine , Humans , Imidazoles/chemistry , Reproducibility of Results , Sensitivity and Specificity
6.
Electrophoresis ; 30(8): 1406-11, 2009 Apr.
Article En | MEDLINE | ID: mdl-19294691

A new approach for the determination of methylephedrine hydrochloride (ME), thebaine, codeine phosphate (CP), and acetylcodeine (AC) was established by CE-ECL with ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate). The conditions for the CE separation, ECL detection, and the effect of ionic liquid were systematically investigated. Under the optimal conditions, the four analytes were well separated within 8 min using 1-butyl-3-methylimidazolium tetrafluoroborate as additive in the electrophoretic buffer. The concentration detection limits of ME, thebaine, CP, and AC were 2.1 x 10(-8), 1.4 x 10(-7), 6.3 x 10(-8), and 3.6 x 10(-8) mol/L (S/N=3), respectively. The LOQs (S/N=10) in real human urine samples were 7.6 x 10(-7) mol/L for ME, 3.6 x 10(-6) mol/L for thebaine, 6.5 x 10(-7) mol/L for CP, and 4.6 x 10(-7) mol/L for AC, respectively. The recoveries of four alkaloids at different levels in human urine samples were between 90.0 and 103.5%. The developed method was successfully applied to the determination of four drug alkaloids in human urine samples.


Electrophoresis, Capillary/methods , Ephedrine/analogs & derivatives , Ionic Liquids/chemistry , Luminescent Measurements/methods , Morphine Derivatives , Ephedrine/analysis , Ephedrine/urine , Humans , Hydrogen-Ion Concentration , Imidazoles/chemistry , Linear Models , Morphine Derivatives/analysis , Morphine Derivatives/urine , Osmolar Concentration , Reproducibility of Results , Sensitivity and Specificity
7.
Hepatology ; 48(5): 1528-39, 2008 Nov.
Article En | MEDLINE | ID: mdl-18925631

UNLABELLED: Previous studies have shown that hepatocyte nuclear factor-4alpha (HNF4alpha) is a central regulator of differentiated hepatocyte phenotype and forced expression of HNF4alpha could promote reversion of tumors toward a less invasive phenotype. However, the effect of HNF4alpha on cancer stem cells (CSCs) and the treatment of hepatocellular carcinoma (HCC) with HNF4alpha have not been reported. In this study, an adenovirus-mediated gene delivery system, which could efficiently transfer and express HNF4alpha, was generated to determine its effect on hepatoma cells (Hep3B and HepG2) in vitro and investigate the anti-tumor effect of HNF4alpha in mice. Our results demonstrated that forced re-expression of HNF4alpha induced the differentiation of hepatoma cells into hepatocytes, dramatically decreased "stemness" gene expression and the percentage of CD133(+) and CD90(+) cells, which are considered as cancer stem cells in HCC. Meanwhile, HNF4alpha reduced cell viability through inducing apparent apoptosis in Hep3B, while it induced cell cycle arrest and cellular senescence in HepG2. Moreover, infection of hepatoma cells by HNF4alpha abolished their tumorigenesis in mice. Most interestingly, systemic administration of adenovirus carrying the HNF4alpha gene protected mice from liver metastatic tumor formation, and intratumoral injection of HNF4alpha also displayed significant antitumor effects on transplanted tumor models. CONCLUSION: The striking suppression effect of HNF4alpha on tumorigenesis and tumor development is attained by inducing the differentiation of hepatoma cells--especially CSCs--into mature hepatocytes, suggesting that differentiation therapy with HNF4alpha may be an effective treatment for HCC patients. Our study also implies that differentiation therapy may present as one of the best strategies for cancer treatment through the induction of cell differentiation by key transcription factors.


Adenoviridae/genetics , Hepatocyte Nuclear Factor 4/genetics , Liver Neoplasms, Experimental/therapy , Liver Neoplasms/therapy , Animals , Colony-Forming Units Assay , Flow Cytometry , Gene Transfer Techniques , Genetic Vectors , Humans , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/pathology , Mice , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/pathology
8.
J Gastroenterol Hepatol ; 23(12): 1917-25, 2008 Dec.
Article En | MEDLINE | ID: mdl-18761555

BACKGROUND AND AIM: The plasminogen activator/plasmin system is known to regulate the extracellular matrix turnover. The aim of this study was to detect the role of plasminogen activator inhibitor-1 (PAI-1) during liver fibrogenesis and investigate the functional effects of PAI-1 gene silencing in rat hepatic stellate cells (HSCs) using small interfering RNA (siRNA). METHODS: Hepatic fibrosis in rats was induced through serial subcutaneously injections of CCl(4) and the expression of PAI-1 was detected by immunohistochemistry and reverse transcription-polymerase chain reaction (PCR). PAI-1 siRNA molecules were constructed and transiently transfected into HSC-T6 using the cell suspension transfection method. The pSUPER RNA interfering system was used to establish the HSC stable cell line pSUPER-shPAI. Expression of alpha-smooth muscle actin, transforming growth factor-beta, tissue inhibitor of metalloproteinases-1, and collagen types I and III were evaluated by real-time PCR. Cell proliferation and the cell cycle were determined by the methyl thiazolyl tetrazolium (MTT) method and flow cytometry. Collagen content in HSCs supernatant was evaluated by enzyme-linked immunosorbent assay. RESULTS: The results showed that PAI-1 was upregulated during liver fibrosis, and its expression was closely correlated with the deposition of collagens. SiRNA molecules were successfully transfected into HSCs and induced inhibition of PAI-1 expression time dependently. Moreover, PAI-1 siRNA treatment downregulated alpha-smooth muscle actin, transforming growth factor-beta, tissue inhibitor of metalloproteinases-1 expression, and inhibited collagen types I and III synthesis both at the mRNA and protein level in transiently and stably transfected HSCs. CONCLUSIONS: This study suggests a significant functional role for PAI-1 in the development of liver fibrosis and that downregulating PAI-1 expression might present as a potential strategy to treat liver fibrosis.


Hepatic Stellate Cells/metabolism , Liver Cirrhosis, Experimental/metabolism , Liver/metabolism , Plasminogen Activator Inhibitor 1/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Actins/metabolism , Animals , Carbon Tetrachloride , Cell Line , Cell Proliferation , Collagen Type I/metabolism , Collagen Type III/metabolism , Disease Models, Animal , Down-Regulation , Hepatic Stellate Cells/pathology , Liver/pathology , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/genetics , Liver Cirrhosis, Experimental/prevention & control , Male , Plasminogen Activator Inhibitor 1/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Time Factors , Tissue Inhibitor of Metalloproteinase-1/metabolism , Transfection , Transforming Growth Factor beta/metabolism
9.
J Cell Physiol ; 217(1): 138-44, 2008 Oct.
Article En | MEDLINE | ID: mdl-18484094

Differentiation of stem cells is tightly regulated by the microenvironment which is mainly composed of nonparenchymal cells. Herein, we investigated effect of hepatic stellate cells (HSCs) in different states on mesenchymal stem cells (MSCs) differentiation. Rat HSCs were isolated and stayed quiescent within 5 days. Primary HSCs were activated by being in vitro cultured for 7 days or cocultured with Kupffer cells for 5 days. MSCs were cocultured with HSCs of different states. Expression of hepatic lineage markers was analyzed by RT-PCR and immunofluorescence. Glycogen deposition was detected by periodic acid-schiff staining. MSCs cocultured with HSC-T6 or Kupffer cell activated HSCs were morphologically transformed into hepatocyte-like cells. Hepatic-specific marker albumin was expressed in 78.3% of the differentiated MSCs 2 weeks after initiation of coculture. In addition, the differentiated MSCs also expressed alpha-fetoprotein, cytokeratin-18, glutamine synthetase and phosphoenolpyruvate carboxykinase. Glycogen deposition was detectable in 55.4% of the differentiated MSCs 6 weeks after initiation of coculture. However, the quiescent HSCs or culture activated HSCs did not exert the ability to modulate the differentiation of MSCs. Moreover, Kupffer cell activated HSCs rather than culture activated HSCs expressed hepatocyte growth factor mRNA. We draw the conclusion that fully activated HSCs could modulate MSCs differentiation into hepatocyte-like cells.


Bone Marrow Cells/cytology , Cell Differentiation/physiology , Hepatocytes/cytology , Mesenchymal Stem Cells/cytology , Animals , Cell Lineage , Coculture Techniques , Fluorescent Antibody Technique , Gene Expression , Hepatocyte Growth Factor/biosynthesis , Hepatocytes/metabolism , Kupffer Cells/cytology , Kupffer Cells/metabolism , Rats , Reverse Transcriptase Polymerase Chain Reaction
...