Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 470: 134306, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626684

RESUMEN

Soil cadmium (Cd) is immobilized by the progressing biomineralization process as microbial induced phosphate precipitation (MIPP), which is regulated by phosphate (P) solubilizing microorganisms and P sources. However, little attention has been paid to the implications of Cd biosorption during MIPP. In this study, the newly isolated Penicillium oxalicum could immobilize 5.4-12.6 % of Cd2+, while the presence of hydroxyapatite (HAP) considerably enhanced Cd2+ immobilization in P. oxalicum and reached over 99 % Cd2+ immobilization efficiency within 7 days. Compared to P. oxalicum mono inoculation, MIPP dramatically boosted Cd biosorption and biomineralization efficiency by 71 % and 16 % after 96 h cultivation, respectively. P. oxalicum preferred to absorbing Cd2+ and reaching maximum Cd2+ biosorption efficiency of 87.8 % in the presence of HAP. More surface groups in P. oxalicum and HAP mineral involved adsorption which resulted in the formation of Cd-apatite [Ca8Cd2(PO4)6(OH)2] via ion exchange. Intracellular S2-, secreted organic acids and soluble P via HAP solubilization complexed with Cd2+, progressively mineralized into Cd5(PO4)3OH, Cd(H2PO4)2, C4H6CdO4 and CdS. These results suggested that Cd2+ immobilization was enhanced simultaneously by the accelerated biosorption and biomineralization during P. oxalicum induced P precipitation. Our findings revealed new mechanisms of Cd immobilization in MIPP process and offered clues for remediation practices at metal contaminated sites.


Asunto(s)
Biomineralización , Cadmio , Penicillium , Fosfatos , Penicillium/metabolismo , Cadmio/química , Cadmio/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Adsorción , Durapatita/química , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/química , Biodegradación Ambiental , Precipitación Química
2.
Environ Pollut ; 319: 120953, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36584858

RESUMEN

Phosphate-solubilizing microorganisms (PSMs) are critically important for increasing soil phosphate (P) and decreasing lead (Pb) bioavailability during microbial-induced phosphate precipitation (MIPP). However, their relative contributions to the indigenous soil microbial communities and P-cycling genes during the MIPP process remain unclear. In this study, inoculation of the PSM P. oxalicum in hydroxyapatite-cultured and Pb-contaminated soil increased soil phosphatase activities, available P (AP) concentrations and reduced available Pb levels. Metagenomics revealed a 3.9-44.0% increase in the abundance of P-cycling genes by P. oxalicum inoculation. No P-cycling genes were assigned to Penicillium. While P. oxalicum increased the complexity of microbial community co-occurrence networks, and improved the directly interrelationships between Penicillium and genera containing P-cycling gene. These results suggesting that P. oxalicum obviously positively affected the regulation of indigenous P-cycling functional communities during the MIPP process. Inorganic P solubilization genes (gcd, ppa, and ppx) have been shown to affect soil AP, suggesting that inorganic P solubilization is the major driver of Pb immobilization improvement following P. oxalicum inoculation. These results enhance our understanding of the significant ecological role of PSMs in governing soil P-cycling and alleviating Pb2+ biotoxicity during the MIPP process.


Asunto(s)
Microbiota , Penicillium , Contaminantes del Suelo , Fosfatos/química , Suelo/química , Plomo , Microbiología del Suelo , Contaminantes del Suelo/química , Durapatita
3.
J Hazard Mater ; 439: 129675, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35907285

RESUMEN

Microbial-induced phosphate (P) precipitation (MIPP) based on P-solubilizing microorganisms (PSM) is regarded as a promising approach to bioimmobilize environmental lead (Pb). Nevertheless, the underlying changes of Pb2+ biotoxicity in PSM during MIPP process were rarely discussed. The current study explored the Pb2+ immobilization and metabolic changes in PSM Penicillium oxalicum postexposure to Pb2+ and/or tricalcium phosphate (TCP). TCP addition significantly increased soluble P concentrations, accelerated extracellular Pb mineralization, and improved antioxidative enzyme activities in P. oxalicum during MIPP process. Secondary Pb2+ biomineralization products were measured as hydroxypyromorphite [Pb10(PO4)6(OH)2]. Using untargeted metabolomic and transcriptomics, we found that Pb2+ exposure stimulated the membrane integrity deterioration and nucleotide metabolism obstruction of P. oxalicum. Correspondingly, P. oxalicum could produce higher levels of gamma-aminobutyric acid (GABA) to enhance the adaptive cellular machineries under Pb2+ stress. While the MIPP process improved extracellular Pb2+ mineralization, consequently alleviating the nucleotide metabolism inhibition and membrane deterioration. Multi-omics results suggested that GABA degradation pathway was stimulated for arginine biosynthesis and TCA cycle after Pb2+ mineralization. These results provided new biomolecular information underlying the Pb2+ exposure biotoxicities to microorganisms in MIPP before the application of this approach in environmental Pb2+ remediation.


Asunto(s)
Penicillium , Fosfatos , Plomo/metabolismo , Plomo/toxicidad , Nucleótidos/metabolismo , Penicillium/metabolismo , Fosfatos/metabolismo , Suelo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA