Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Quant Imaging Med Surg ; 14(7): 4348-4361, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39022224

RESUMEN

Background: Ischemic stroke, which has a high incidence, disability, and mortality rate, is mainly caused by carotid atherosclerotic plaque. The difference in the geometric structures of the carotid arteries inevitably leads to the variability in the local hemodynamics, which plays a key role in the formation of carotid atherosclerosis. At present, the combined mechanisms of hemodynamic and geometric in the formation of carotid atherosclerotic plaque are not clear. Thus, this study characterized the geometric and hemodynamic characteristics of carotid atherosclerotic plaque formation using four-dimensional (4D) flow magnetic resonance imaging (MRI). Methods: Ultimately, 122 carotid arteries from 61 patients were examined in this study. According to the presence of plaques at the bifurcation of the carotid artery on cervical vascular ultrasound (US), carotid arteries were placed into a plaque group (N=69) and nonplaque group (N=53). The ratio of the maximum internal carotid artery (ICA) inner diameter to the maximum common carotid artery (CCA) inner diameter (ICA-CCA diameter ratio), bifurcation angle, and tortuosity were measured using neck three-dimensional time-of-flight magnetic resonance angiography (3D TOF-MRA). Meanwhile, 4D flow MRI was used to obtain the following hemodynamic parameters of the carotid arteries: volume flow rate, velocity, wall shear stress (WSS), and pressure gradient (PG). Independent sample t-tests were used to compare carotid artery geometry and hemodynamic changes between the plaque group and nonplaque group. Results: The ICA-CCA diameter ratio between the plaque group and the nonplaque group was not significantly different (P=0.124), while there were significant differences in the bifurcation angle (P=0.005) and tortuosity (P=0.032). The bifurcation angle of the plaque group was greater than that of the nonplaque group (60.70°±20.75° vs. 49.32°±22.90°), and the tortuosity was smaller than that of the nonplaque group (1.07±0.04 vs. 1.09±0.05). There were no significant differences between the two groups in terms of volume flow rate (P=0.351) and the maximum value of velocity (velocitymax) (P=0.388), but the axial, circumferential, and 3D WSS values were all significantly different, including their mean values (all P values <0.001) and the maximum value of 3D WSS (P<0.001), with the mean axial, circumferential, 3D WSS values, along with the maximum 3D WSS value, being lower in the plaque group. The two groups also differed significantly in terms of maximum PG value (P=0.030) and mean PG value (P=0.026), with these values being greater in the nonplaque group than in the plaque group. Conclusions: A large bifurcation angle and a low tortuosity of the carotid artery are geometric risk factors for plaque formation in this area. Low WSS and low PG values are associated with carotid atherosclerotic plaque formation.

2.
Insights Imaging ; 15(1): 166, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954290

RESUMEN

OBJECTIVES: This study investigated the quantitative assessment and application of Synthetic MRI (SyMRI) for preoperative brain development in children with congenital heart disease (CHD). METHODS: Forty-three CHD patients aged 2-24 months were prospectively included in the observation group, and 43 healthy infants were included in the control group. The SyMRI scans were processed by postprocessing software to obtain T1, T2, and PD maps. The values of T1, T2, and PD in different brain regions were compared with the scores of the five ability areas of the Gesell Development Scale by Pearson correlation analysis. RESULTS: In the observation group, the T1 values of the posterior limb of the internal capsule (PLIC), Optic radiation (PTR), cerebral peduncle, centrum semiovale, occipital white matter, temporal white matter, and dentate nucleus were greater than those in the control group. In the observation group, the T2 values of the PLIC, PTR, frontal white matter, occipital white matter, temporal white matter, and dentate nucleus were greater than those in the control group. Pearson correlation analysis revealed that the observation group had significantly lower Development Scale scores. In the observation group, the T2 value of the splenium of the corpus callosum was significantly positively correlated with the personal social behavior score. The AUCs for diagnosing preoperative brain developmental abnormalities in children with CHD using T1 values of the temporal white matter and dentate nucleus were both greater than 0.60. CONCLUSIONS: Quantitative assessment using SyMRI can aid in the early detection of preoperative brain development abnormalities in children with CHD. CRITICAL RELEVANCE STATEMENT: T1 and T2 relaxation values from SyMRI can be considered as a quantitative imaging marker to detect abnormalities, allowing for early clinical evaluation and timely intervention, thereby reducing neurodevelopmental disorders in these children. KEY POINTS: T1 and T2 relaxation values by SyMRI are related to myelin development. Evaluated development quotient markers were lower in the observation compared to the control group. SyMRI can act as a reference indicator for brain development in CHD children.

3.
Front Neurol ; 15: 1343423, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550341

RESUMEN

Objectives: To accurately predict the risk of ischemic stroke, we established a radiomics model of carotid atherosclerotic plaque-based high-resolution vessel wall magnetic resonance imaging (HR-VWMRI) and combined it with clinical indicators. Materials and methods: In total, 127 patients were finally enrolled and randomly divided into training and test cohorts. HR-VWMRI three-dimensional T1-weighted imaging (T1WI) and contrast-enhanced T1WI (T1CE) were collected. A traditional model was built by recording and calculating radiographic features of the carotid plaques and patients' clinical indicators. After extracting radiomics features from T1WI and T1CE images, the least absolute shrinkage and selection operator (LASSO) algorithm was used to select the optimal features and construct the radiomics_T1WI model and the radiomics_T1CE model. The traditional and radiomics features were used to build combined models. The performance of all the models predicting ischemic stroke was evaluated in the training and test cohorts, respectively. Results: Body mass index (BMI) and intraplaque hemorrhage (IPH) were independently related to ischemic stroke and were used to build the traditional model, which achieved an area under the curve (AUC) of 0.79 versus 0.78 in the training and test cohorts, respectively. The AUC value of the radiomics_T1WI model is the lowest in the training and test cohorts, but the prediction performance is significantly improved when the model combines IPH and BMI. The AUC value of the combined_T1WI model was 0.78 and 0.81 in the training and test cohorts, respectively. In addition, in the training and test cohorts, the radiomics_T1CE model based on HR-VWMRI combined clinical characteristics, which is the combined_T1CE model, had the highest AUC value of 0.84 and 0.82, respectively. Conclusion: Compared with other models, the radiomics_T1CE model based on HR-VWMRI combined clinical characteristics, which is a combined_T1CE model, can accurately predict the risk of ischemic stroke.

4.
Quant Imaging Med Surg ; 14(2): 1526-1540, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38415119

RESUMEN

Background: Neuroimaging plays a central role in the evaluation, treatment, and prognosis of neonates. In recent years, the exploration of the developing brain has been a major focus of research for researchers and clinicians. In this study, we conducted bibliometric and visualization analyses of the related studies in the field of neonatal magnetic resonance imaging (MRI) brain neuroimaging from the past 10 years, and summarized its research status, hotspots, and frontier development trends. Methods: The Web of Science core collection database was used as the literature source from which to retrieve the relevant papers and reviews in the field of neonatal MRI brain neuroimaging published in the Science Citation Index-Expanded from 2013 to 2022. VOSviewer and CiteSpace were used to conduct bibliometric and visualization analyses of the annual publication volume, countries, institutions, journals, authors, co-cited literature, and the overall distribution of keywords. Results: We retrieved 3,568 papers and reviews published from 2013 to 2022. The number of publications increased during this period. The United States (US) and the United Kingdom were the largest contributors, with the US receiving the highest H-index and number of citations. The institutions that published the most were the University of London and Harvard University. The research mainly focused on cerebral cortex, brain tissue, brain structure network, artificial intelligence algorithm, automatic image segmentation, and premature infants. Conclusions: This study reveals the research status and hotspots of magnetic resonance imaging in the field of neonatal brain neuroimaging in the past decade, which helps researchers to better understand the research status, hotspots, and frontier development trends.

6.
Gynecol Endocrinol ; 35(9): 777-781, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30982355

RESUMEN

Objective: To investigate the MRI manifestations of congenital vaginal atresia, analyze its imaging features, and improve the understanding of the disease. Methods: MRI findings and clinical data of 12 patients with congenital vaginal atresia confirmed by hysteroscopy and laparoscopic surgery were retrospectively analyzed. Vaginal atresia was classified according to vaginal dysplasia in AFS female genital malformation classification system. Results: In this study, 12 cases of congenital vaginal atresia were diagnosed by combined preoperative MRI with operative diagnosis. Among them, 10 patients all had type-I congenital vaginal atresia, and their uterus and cervix were normal (1 patient had ectopic renal malformation combined with left ovarian endometriosis cyst and 1 patient with uterine empyema). The other two cases were diagnosed congenital vaginal atresia type II (1 case merged with residual uterus, 1 case with cervical dysplasia). MRI mainly manifested as dilatation and hemorrhage in the uterine cavity, cervical canal and vaginal upper segment. T1WI showed high signal, T2WI showed slightly lower and slightly higher signal. The dilated vagina was above the perineal level. Conclusion: MRI features of congenital vaginal atresia have certain characteristics. MRI cannot only accurately assess the type of vaginal dysplasia and its associated complications, but also make objective evaluation and diagnosis, so it can be used as the best effective preoperative image evaluation.


Asunto(s)
Imagen por Resonancia Magnética , Útero/anomalías , Útero/diagnóstico por imagen , Enfermedades Vaginales/congénito , Enfermedades Vaginales/diagnóstico , Adolescente , Insuficiencia Suprarrenal/diagnóstico , Adulto , Niño , Preescolar , Anomalías Congénitas/diagnóstico , Diagnóstico Diferencial , Femenino , Retardo del Crecimiento Fetal/diagnóstico , Humanos , Lactante , Recién Nacido , Osteocondrodisplasias/diagnóstico , Estudios Retrospectivos , Anomalías Urogenitales/diagnóstico , Vagina/anomalías , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA