Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6768, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880242

RESUMEN

Interest in securing energy production channels from renewable sources is higher than ever due to the daily observation of the impacts of climate change. A key renewable energy harvesting strategy achieving carbon neutral cycles is artificial photosynthesis. Solar-to-fuel routes thus far relied on elaborately crafted semiconductors, undermining the cost-efficiency of the system. Furthermore, fuels produced required separation prior to utilization. As an artificial photosynthesis design, here we demonstrate the conversion of swimming green algae into photovoltaic power stations. The engineered algae exhibit bioelectrogenesis, en route to energy storage in hydrogen. Notably, fuel formation requires no additives or external bias other than CO2 and sunlight. The cellular power stations autoregulate the oxygen level during artificial photosynthesis, granting immediate utility of the photosynthetic hydrogen without separation. The fuel production scales linearly with the reactor volume, which is a necessary trait for contributing to the large-scale renewable energy portfolio.

2.
Sci Adv ; 7(20)2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33980487

RESUMEN

The harvesting of photosynthetic electrons (PEs) directly from photosynthetic complexes has been demonstrated over the past decade. However, their limited efficiency and stability have hampered further practical development. For example, despite its importance, the interfacial electron transfer between the photosynthetic apparatus and the electrode has received little attention. In this study, we modified electrodes with RuO2 nanosheets to enhance the extraction of PEs from thylakoids, and the PE transfer was promoted by proton adsorption and surface polarity characteristics. The adsorbed protons maintained the potential of an electrode more positive, and the surface polarity enhanced thylakoid attachment to the electrode in addition to promoting ensemble docking between the redox species and the electrode. The RuO2 bioanode exhibited a five times larger current density and a four times larger power density than the Au bioanode. Last, the electric calculators were successfully powered by photosynthetic energy using a RuO2 bioanode.

3.
Adv Mater ; 33(47): e2005919, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33236450

RESUMEN

Harvesting solar energy in the form of electricity from the photosynthesis of plants, algal cells, and bacteria has been researched as the most environment-friendly renewable energy technology in the last decade. The primary challenge has been the engineering of electrochemical interfacing with photosynthetic apparatuses, organelles, or whole cells. However, with the aid of low-dimensional nanomaterials, there have been many advances, including enhanced photon absorption, increased generation of photosynthetic electrons (PEs), and more efficient transfer of PEs to electrodes. These advances have demonstrated the possibility for the technology to advance to a new level. In this article, the fundamentals of photosynthesis are introduced. How PE harvesting systems have improved concerning solar energy absorption, PE production, and PE collection by electrodes is discussed. The review focuses on how different kinds of nanomaterials are applied and function in interfacing with photosynthetic materials for enhanced PE harvesting. Finally, the review analyzes how the performance of PE harvesting and stand-alone systems have evolved so far and its future prospects.


Asunto(s)
Energía Renovable
4.
ACS Appl Mater Interfaces ; 12(49): 54683-54693, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33226773

RESUMEN

Direct harvesting of electricity from photosynthesis is highly desired as an eco-friendly and sustainable energy harvesting technology. Photosynthetic apparatuses isolated from plants, such as thylakoid membranes (TMs), are deposited on an electrode by which photosynthetic electrons (PEs) are collected from water splitting. To enhance PE collection efficiency, it is critical to increase the electrochemical interfaces between TMs and the electrode. Considering the size of TMs to be around a few hundred nanometer, we hypothesize that an array of micropillar-shaped (MP) electrode can maximize the TM/electrode interface area. Thus, we developed MP electrodes with different heights and investigated the electrospraying of TM-alginate mixtures to fill the gaps between MPs uniformly and conformally. The uniformity of the TM-alginate film and the interaction between the TM and the MP electrode were evaluated to understand how the MP heights and film quality influenced the magnitude of the PE currents. PE currents increased up to 2.4 times for an MP electrode with an A/R of 1.8 compared to a flat electrode, indicating increased direct contact interface between TMs and the electrode. Furthermore, to demonstrate the scalability of this approach, an array of replicated SU-8 MP electrodes was prepared and PE currents of up to 3.2 µA were monitored without a mediator under 68 mW/cm2. Finally, the PE current harvesting was sustained for 14 days without decay, demonstrating the long-term stability of the TM-alginate biophotoanodes.

5.
Biosens Bioelectron ; 117: 15-22, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29879583

RESUMEN

Direct extraction of photosynthetic electrons from the whole photosynthetic cells such as plant cells or algal cells can be highly efficient and sustainable compared to other approaches based on isolated photosynthetic apparatus such as photosystems I, II, and thylakoid membranes. However, insertion of nanoelectrodes (NEs) into individual cells are time-consuming and unsuitable for scale-up processes. We propose simple and efficient insertion of massively-populated NEs into cell films in which algal cells are densely packed in a monolayer. After stacking the cell film over an NE array, gentle pressing of the stack allows a large number of NEs to be inserted into the cells in the cell film. The NE array was fabricated by metal-assisted chemical etching (MAC-etching) followed by additional steps of wet oxidation and oxide etching. The cell film was prepared by mixing highly concentrated algal cells with alginate hydrogel. Photosynthetic currents of up to 106 nA/cm2 was achieved without aid of mediators, and the photosynthetic function was maintained for 6 days after NE array insertion into algal cells.


Asunto(s)
Técnicas Biosensibles/métodos , Electrones , Fotosíntesis , Chlorophyta/química , Chlorophyta/citología , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA