Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Prolif ; : e13626, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426218

RESUMEN

NIMA-related kinase 2 (NEK2) is a serine/threonine protein kinase that regulates mitosis and plays pivotal roles in cell cycle regulation and DNA damage repair. However, its function in porcine embryonic development is unknown. In this study, we used an NEK2-specific inhibitor, JH295 (JH), to investigate the role of NEK2 in embryonic development and the underlying regulatory mechanisms. Inhibition of NEK2 after parthenogenesis activation or in vitro fertilization significantly reduced the rates of cleavage and blastocyst formation, the numbers of trophectoderm and total cells and the cellular survival rate compared with the control condition. NEK2 inhibition delayed cell cycle progression at all stages from interphase to cytokinesis during the first mitotic division; it caused abnormal nuclear morphology in two- and four-cell stage embryos. Additionally, NEK2 inhibition significantly increased DNA damage and apoptosis, and it altered the expression levels of DNA damage repair- and apoptosis-related genes. Intriguingly, NEK2 inhibition downregulated the expression of ß-catenin and its downstream target genes. To validate the relationship between Wnt/ß-catenin signalling and NEK2 during porcine embryonic development, we cultured porcine embryos in JH-treated medium with or without CHIR99021, a Wnt activator. CHIR99021 co-treatment strongly restored the developmental parameters reduced by NEK2 inhibition to control levels. Our findings suggest that NEK2 plays an essential role in porcine embryonic development by regulating DNA damage repair and normal mitotic division via the Wnt/ß-catenin signalling pathway.

2.
Materials (Basel) ; 15(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36234011

RESUMEN

The pressure conductive silicone rubber socket (PCR) is one of the promising test socket devices in high-speed testing environments. In this study, we report highly dense PCR device channels comprised of high aspect-ratio flake-shaped Ni powders. The shape-controlled Ni powders are prepared by the high-energy milling process. The scanning electron microscopy (SEM) and particle size analyzer (PSA) results of the synthesized powder samples showed well-defined flake type Ni powder morphology, and the powder sizes are distributed in the range of ~24-49 µm. The cross-sectional SEM study of the fabricated PCR revealed that the channels consisting of flake Ni powder are uniformly, densely distributed, and connected as face-to-face contact. The resistance of the PCR channels comprised of flake-shaped Ni powders showed ~23% lower resistance values than the spherical-shaped Ni powders-based channels, which could be due to the face-to-face contact of the powders in the channels. The magnetic properties study for the flake-type Ni powder showed a high remanence (~2.2 emu/g) and coercivity (~5.24 mT), owing to the shape anisotropy factor. Finally, the fabricated highly dense and conductive channels of the silicone rubber socket device by shape-controlled Ni powder could be a potential test socket device.

3.
Int J Oncol ; 41(5): 1628-34, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22940714

RESUMEN

Resveratrol (3,4',5 tri-hydroxystilbene), a natural plant polyphenol, has gained interest as a non-toxic chemopreventive agent capable of inducing tumor cell death in a variety of cancer types. Several studies were undertaken to obtain synthetic analogues of resveratrol with potent anticancer activity. The aim of the present study was to investigate the effect of HS-1793 as a new resveratrol analog on apoptosis via the mitochondrial pathway in murine breast cancer cells. A pharmacological dose (1.3-20 µM) of HS-1793 exerted a cytotoxic effect on murine breast cancer cells resulting in apoptosis. HS-1793-mediated cytotoxicity in FM3A cells by several apoptotic events including mitochondrial cytochrome c release, activation of caspase-3 and PARP occurred. In addition, HS-1793 induced collapse of ∆Ψm and enhanced AIF and Endo G release from mitochondria while undergoing apoptosis. These results demonstrate that the cytotoxicity by HS-1793 in FM3A cells can mainly be attributed to apoptosis via a mitochondrial pathway by caspase activation or contributions of AIF and Endo G.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Naftoles/farmacología , Resorcinoles/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Caspasa 3/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Femenino , Fase G1/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Poli(ADP-Ribosa) Polimerasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...