Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Nano Lett ; 23(14): 6528-6535, 2023 Jul 26.
Article En | MEDLINE | ID: mdl-37432884

Rapid advances in flexible optoelectronic devices necessitate the concomitant development of high-performance, cost-efficient, and flexible transparent conductive electrodes (TCEs). This Letter reports an abrupt enhancement in the optoelectronic characteristics of ultrathin Cu-layer-based TCEs via Ar+-mediated modulation of the chemical and physical states of a ZnO support surface. This approach strongly regulates the growth mode for the subsequently deposited Cu layer, in addition to marked alteration to the ZnO/Cu interface states, resulting in exceptional TCE performance in the form of ZnO/Cu/ZnO TCEs. The resultant Haacke figure of merit (T10/Rs) of 0.063 Ω-1, 53% greater than that of the unaltered, otherwise identical structure, corresponds to a record-high value for Cu-layer-based TCEs. Moreover, the enhanced TCE performance in this approach is shown to be highly sustainable under severe simultaneous loadings of electrical, thermal, and mechanical stresses.

2.
ACS Appl Mater Interfaces ; 14(10): 12797-12811, 2022 Mar 16.
Article En | MEDLINE | ID: mdl-35234455

A vital objective in the wetting of Au deposited on chemically heterogeneous oxides is to synthesize a completely continuous, highly crystalline, ultrathin-layered geometry with minimized electrical and optical losses. However, no effective solution has been proposed for synthesizing an ideal Au-layered structure. This study presents evidence for the effectiveness of atomic oxygen-mediated growth of such an ideal Au layer by improving Au wetting on ZnO substrates with a substantial reduction in free energy. The unexpected outcome of the atomic oxygen-mediated Au growth can be attributed to the unconventional segregation and incorporation of atomic oxygen along the outermost boundaries of Au nanostructures evolving in the clustering and layering stages. Moreover, the experimental and numerical investigations revealed the spontaneous migration of atomic oxygen from an interstitial oxygen surplus ZnO bulk to the Au-ZnO interface, as well as the segregation (float-out) of the atomic oxygen toward the top Au surfaces. Thus, the implementation of a 4-nm-thick, two-dimensional, quasi-single-crystalline Au layer with a nearly complete crystalline realignment at a mild temperature (570 K) enabled exceptional optoelectrical performance with record-low resistivity (<7.5 × 10-8 Ω·m) and minimal optical loss (∼3.5%) at a wavelength of 700 nm.

3.
Nanomaterials (Basel) ; 10(5)2020 May 15.
Article En | MEDLINE | ID: mdl-32429120

Fabricating polymer solar cells (PSCs) on flexible polymer substrates, instead of on hard glass, is attractive for implementing the advantage and uniqueness of the PSCs represented by mechanically rollable and light-weight natures. However, simultaneously achieving reliable robustness and high-power conversion efficiency (PCE) in such flexible PSCs is still technically challenging due to poor light harvesting of thin photoactive polymers. In this work, we report a facile, effective strategy for improving the light-harvesting performance of flexible PSCs without sacrificing rollability. Very high transparent (93.67% in 400-800 nm) and low sheet resistance (~10 Ω sq-1) ZnO/Ag(O)/ZnO electrodes were implemented as the flexible substrates. In systematically comparison with ZnO/Ag/ZnO electrodes, small amount of oxygen induced continuous metallic films with lower thickness, which resulted in higher transmittance and lower sheet resistance. To increase the light absorption of thin active layer (maintain the high rollability of active layer), a unique platform simultaneously utilizing both a transparent electrode configuration based on an ultrathin oxygen-doped Ag, Ag(O), and film and plasmonic Ag@SiO2 nanoparticles were designed for fully leveraging the advantages of duel microresonant cavity and plasmonic effects to enhance light absorbance in photoactive polymers. A combination of the ZnO/Ag(O)/ZnO electrode and Ag@SiO2 nanoparticles significantly increased the short-current density of PSCs to 17.98 mA cm-2 with enhancing the photoluminescence of PTB7-Th film. The flexible PSC using the optimized configuration provided an average PCE of 8.04% for flexible PSCs, which was increased by 36.27% compared to that of the PSC merely using a conventional transparent indium tin oxide electrode.

4.
Nanoscale ; 12(3): 1749-1758, 2020 Jan 23.
Article En | MEDLINE | ID: mdl-31895376

Artificially designing the crystal orientation and facets of noble metal nanoparticles is important to realize unique chemical and physical features that are very different from those of noble metals in bulk geometries. However, relative to their counterparts synthesized in wet-chemical processes, vapor-depositing noble metal nanoparticles with the desired crystallographic features while avoiding any notable impurities is quite challenging because this task requires breaking away from the thermodynamically favorable geometry of nanoparticles. We used plasma-generated N atoms as a surface-active agent, a so-called surfactant, to control the structural development of Ag nanoparticles supported on a chemically heterogeneous ZnO substrate. The N-surfactant-facilitated sputter deposition provided strong selectivity for crystalline orientation and facets, leading to a highly flattened nanoparticle shape that clearly deviated from the energetically favorable spherical polyhedra, due to the drastic decreases in the surface free energies of Ag nanoparticles in the presence of the N surfactant. The Ag nanoparticles successively developed a nearly unidirectional (111) orientation aligned by stimulating the crystalline coupling of Ag along the orientation of the ZnO substrate. The experimental and simulation results not only offer new insights into the advantages of N as a surfactant for the orientation and shape-controlled synthesis of Ag nanoparticles via sputter deposition but also provide the first solid evidence validating that immiscible, nonresidual gaseous surfactants can be used in the vapor deposition processes of noble metal nanoparticles to manipulate their surface free energies.

5.
RSC Adv ; 9(16): 9160-9170, 2019 Mar 15.
Article En | MEDLINE | ID: mdl-35517702

Perovskite solar cells (PSCs) fabricated on transparent polymer substrates are considered a promising candidate as flexible solar cells that can emulate the advantages of organic solar cells, which exhibit considerable freedom in their device design thanks to their light weight and mechanically flexibility while achieving high photocurrent conversion efficiency, comparable to that of their conventional counterparts fabricated on rigid glasses. However, the full realization of highly efficient, flexible PSCs is largely prevented by technical difficulties in simultaneously attaining a transparent electrode with efficient charge transport to meet the specifications of PSCs. In this study, an effective strategy for resolving this technical issue has been devised by proposing a simple but highly effective technique to fabricate an efficient, multilayer TiO2/Ag(O)/ZnO (TAOZ) configuration. This configuration displays low losses in optical transmittance and electrical conductivity owing to its completely continuous, ultrathin metallic Ag(O) transparent electrode, and any notable current leakage is suppressed by its pinhole-free TiO2 electron transport layer. These features are a direct consequence of the rapid evolution of Ag(O) and TiO2 into ultrathin, completely continuous, pinhole-free layers owing to the dramatically improved wetting of metallic Ag(O) with a minimal dose of oxygen (ca. 3 at%) during sputtering. The TAOZ configuration exhibits an average transmittance of 88.5% in the spectral range of 400-800 nm and a sheet resistance of 8.4 Ω sq-1 while demonstrating superior mechanical flexibility to that of the conventional TiO2 on ITO configuration. The photocurrent conversion efficiency of flexible PSCs is significantly improved by up to 11.2% thanks to an optimum combination of optoelectrical performance and pinhole-free morphologies in the TAOZ configuration.

6.
ACS Appl Mater Interfaces ; 10(47): 40901-40910, 2018 Nov 28.
Article En | MEDLINE | ID: mdl-30379522

Controlling the shape and crystallography of nanocrystals during the early growth stages of a noble metal layer is important because of its correlation with the final layer morphology and optoelectrical features, but this task is unattainable in vapor deposition processes dominated by artificially uncontrollable thermodynamic free energies. We report on experimental evidence for the controllable evolution of Ag nanocrystals as induced by the addition of nitrogen, presumed to be nonresidual in the Ag lattice given its strong float-out behavior. This atypical formation of energetically stable Ag nanocrystals with significantly improved wetting abilities on a chemically heterogeneous substrate promotes the development of an atomically flat, ultrathin, high-purity Ag layer with a thickness of only 5 nm. This facilitates the fabrication of Ag thin-film electrodes exhibiting highly enhanced optical transparency over a broad spectral range in the visible and near-infrared spectral range. An Ag thin-film electrode with a ZnO/Ag/ZnO configuration exhibits an average transmittance of about 95% in the spectral range of 400-800 nm with a maximum transmittance of over 98% at 580 nm, which is comparable with the best transparency values so far reported for transparent electrodes. This degree of optical transparency provides an excellent chance to improve the photon absorption of photovoltaic devices employing an Ag thin film as their window electrode. This is clearly confirmed by the superior performance of a flexible organic solar cell with a power conversion efficiency of 8.0%, which is far superior to that of the same solar cell using a conventional amorphous indium tin oxide electrode (6.4%).

7.
ACS Appl Mater Interfaces ; 10(32): 27510-27520, 2018 Aug 15.
Article En | MEDLINE | ID: mdl-30028116

Improving the wetting ability of Ag on chemically heterogeneous oxides is technically important to fabricate ultrathin, continuous films that would facilitate the minimization of optical and electrical losses to develop qualified transparent Ag film electrodes in the state-of-the-art optoelectronic devices. This goal has yet to be attained, however, because conventional techniques to improve wetting of Ag based on heterogeneous metallic wetting layers are restricted by serious optical losses from wetting layers. Herein, we report on a simple and effective technique based on the partial oxidation of Ag nanoclusters in the early stages of Ag growth. This promotes the rapid evolution of the subsequently deposited pure Ag into a completely continuous layer on the ZnO substrate, as verified by experimental and numerical evidence. The improvement in the Ag wetting ability allows the development of a highly transparent, ultrathin (6 nm) Ag continuous film, exhibiting an average optical transmittance of 94% in the spectral range 400-800 nm and a sheet resistance of 12.5 Ω sq-1, which would be well-suited for application to an efficient front window electrode for flexible solar cell devices fabricated on polymer substrates.


Silver/chemistry , Electric Conductivity , Electricity , Electrodes , Oxides
8.
ACS Appl Mater Interfaces ; 10(16): 14079-14086, 2018 Apr 25.
Article En | MEDLINE | ID: mdl-29631398

Here, we study the plasmonic metal-enhanced fluorescence properties of blue-emitting graphene quantum dots (GQDs) and green-emitting graphene oxide quantum dots (GOQDs) using fluorescence lifetime imaging microscopy. Reactive ion sputtered silver (Ag) on zinc oxide (ZnO) thin films deposited on silicon (Si) wafers are used as the substrates. The morphology of the sputtered Ag gradually changes from nanoislands, via and elongated network and a continuous film with nanoholes, to a continuous film with increasing sputtering time. The fluorescence properties of GQD and GOQD on the Ag are modulated in terms of the intensities and lifetimes as the morphology of the Ag layers changes. Although both GQD and GOQD show similar fluorescence modulation on the Ag nanofilms, the fluorescence of GQD is enhanced, whereas that of GOQD is quenched due to the charge transfer process from GOQD to ZnO. Moreover, the GQD and GOQD exhibit different fluorescence lifetimes due to the effect of their electronic configurations. The theoretical calculation explains that the fluorescence amplification on the Ag nanofilms can largely be attributed to the enhanced absorption mechanism arising from accumulated optical fields around nanogaps and nanovoids in the Ag nanofilms.

9.
RSC Adv ; 8(12): 6444-6451, 2018 Feb 06.
Article En | MEDLINE | ID: mdl-35540411

Developing a sensor that identifies and quantifies trace amounts of analyte molecules is crucially important for widespread applications, especially in the areas of chemical and biological detection. By non-invasively identifying the vibrational signatures of the target molecules, surface-enhanced Raman scattering (SERS) has been widely employed as a tool for molecular detection. Here, we report on the reproducible fabrication of wafer-scale dense SERS arrays and single-nanogap level near-field imaging of these dense arrays under ambient conditions. Plasmonic nanogaps densely populated the spaces among globular Ag nanoparticles with an areal density of 120 particles per µm2 upon application of a nanolithography-free simple process consisting of the Ar plasma treatment of a polyethylene terephthalate substrate and subsequent Ag sputter deposition. The compact nanogaps produced a high SERS enhancement factor of 3.3 × 107 and homogeneous (coefficient of variation of 8.1%) SERS response. The local near fields at these nanogaps were visualized using photo-induced force microscopy that simultaneously enabled near-field excitation and near-field force detection under ambient conditions. A high spatial resolution of 3.1 nm was achieved. Taken together, the generation of a large-area SERS array with dense plasmonic nanogaps and the subsequent single-nanogap level characterization of the local near field have profound implications in the nanoplasmonic imaging and sensing applications.

10.
ACS Appl Mater Interfaces ; 9(42): 37146-37153, 2017 Oct 25.
Article En | MEDLINE | ID: mdl-28976735

Molybdenum disulfide with atomic-scale flatness has application potential in high-speed and low-power logic devices owing to its scalability and intrinsic high mobility. However, to realize viable technologies based on two-dimensional materials, techniques that enable their large-area growth with high quality and uniformity on wafer cale is a prerequisite. Here, we provide a route toward highly uniform growth of a wafer-scale, four-layered MoS2 film on a 2 in. substrate via a sequential process consisting of the deposition of a molybdenum trioxide precursor film by sputtering followed by postsulfurization using a chemical vapor deposition process. Spatial spectroscopic analyses by Raman and PL mapping validated that the as-synthesized MoS2 thin films exhibit high uniformity on a 2 in. sapphire substrate. The highly uniform MoS2 layers allow a successful integration of devices based on ∼1200 MoS2 transistor arrays with a yield of 95% because of their extreme homogeneity on Si wafers. Moreover, a pulse electrical measurement technique enabled investigation of the inherent physical properties of the atomically thin MoS2 layers by minimizing the charge-trapping effect. Such a facile synthesis method can be possibly applied to other 2D transition metal dichalcogenides to ultimately realize the chip integration of device architectures with all 2D-layered building blocks.

11.
ACS Appl Mater Interfaces ; 9(44): 38695-38705, 2017 Nov 08.
Article En | MEDLINE | ID: mdl-29039201

The development of highly efficient flexible transparent electrodes (FTEs) supported on polymer substrates is of great importance to the realization of portable and bendable photovoltaic devices. Highly conductive, low-cost Cu has attracted attention as a promising alternative for replacing expensive indium tin oxide (ITO) and Ag. However, highly efficient, Cu-based FTEs are currently unavailable because of the absence of an efficient means of attaining an atomically thin, completely continuous Cu film that simultaneously exhibits enhanced optical transmittance and electrical conductivity. Here, strong two-dimensional (2D) epitaxy of Cu on ZnO is reported by applying an atomically thin (around 1 nm) oxygen-doped Cu wetting layer. Analyses of transmission electron microscopy images and X-ray diffraction patterns, combined with first-principles density functional theory calculations, reveal that the reduction in the surface and interface free energies of the wetting layers with a trace amount (1-2 atom %) of oxygen are largely responsible for the two-dimensional epitaxial growth of the Cu on ZnO. The ultrathin 2D Cu layer, embedded between ZnO films, exhibits a highly desirable optical transmittance of over 85% in a wavelength range of 400-800 nm and a sheet resistance of 11 Ω sq-1. The validity of this innovative approach is verified with a Cu-based FTE that contributes to the light-to-electron conversion efficiency of a flexible organic solar cell that incorporates the transparent electrode (7.7%), which far surpasses that of a solar cell with conventional ITO (6.4%).

12.
ACS Appl Mater Interfaces ; 9(6): 5358-5365, 2017 Feb 15.
Article En | MEDLINE | ID: mdl-28098970

A new way was meticulously designed to utilize the localized surface plasmon resonance (LSPR) effect and the light scattering effect of silver nanoplate (Ag-nPl) and core-shell Ag@SiO2 nanoparticles (Ag@SiO2-NPs) to enhance the photovoltaic performances of polymer solar cells (PSCs). To prevent direct contact between silver nanoparticles (Ag-NPs) and photoactive materials which will cause electrons quenching, bare Ag-nPl were spin-coated on indium tin oxide and silica capsulated Ag-NPs were incorporated to a PBDTTT-C-T:PC71BM active layer. As a result, the devices incorporated with Ag-nPl and Ag@SiO2-NPs showed great enhancements. With the dual effects of Ag-nPl and Ag@SiO2-NPs in devices, all wavelength sensitization in the visible range was realized; therefore, the power conversion efficiency (PCE) of PSCs showed a great enhancement of 14.0% to 8.46%, with an increased short-circuit current density of 17.23 mA·cm-2. The improved photovoltaic performances of the devices were ascribed to the LSPR effect and the light scattering effect of metallic nanoparticles. Apart from optical effects, the charge collection efficiency of PSCs was improved after the incorporation of Ag-nPl.

13.
Nat Commun ; 6: 8830, 2015 Nov 05.
Article En | MEDLINE | ID: mdl-26538008

Advances in flexible optoelectronic devices have led to an increasing need for developing highly efficient, low-cost, flexible transparent conducting electrodes. Copper-based electrodes have been unattainable due to the relatively low optical transmission and poor oxidation resistance of copper. Here, we report the synthesis of a completely continuous, smooth copper ultra-thin film via limited copper oxidation with a trace amount of oxygen. The weakly oxidized copper thin film sandwiched between zinc oxide films exhibits good optoelectrical performance (an average transmittance of 83% over the visible spectral range of 400-800 nm and a sheet resistance of 9 Ω sq(-1)) and strong oxidation resistance. These values surpass those previously reported for copper-based electrodes; further, the record power conversion efficiency of 7.5% makes it clear that the use of an oxidized copper-based transparent electrode on a polymer substrate can provide an effective solution for the fabrication of flexible organic solar cells.

14.
Nanoscale ; 6(12): 6911-24, 2014 Jun 21.
Article En | MEDLINE | ID: mdl-24835145

A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area and low effective series resistance for hole transport, OSCs based on this 3D electrode exhibit a power conversion efficiency that is 11-22% higher than that achievable in OSCs by means of conventional planar ITO film-type electrodes. A record high efficiency of 6.74% can be achieved in a bendable OSC fabricated on a poly(ethylene terephthalate) substrate.

15.
ACS Appl Mater Interfaces ; 5(20): 9933-41, 2013 Oct 23.
Article En | MEDLINE | ID: mdl-24060352

We report that significantly more transparent yet comparably conductive AgOx films, when compared to Ag films, are synthesized by the inclusion of a remarkably small amount of oxygen (i.e., 2 or 3 atom %) in thin Ag films. An 8 nm thick AgOx (O/Ag=2.4 atom %) film embedded between 30 nm thick ITO films (ITO/AgOx/ITO) achieves a transmittance improvement of 30% when compared to a conventional ITO/Ag/ITO electrode with the same configuration by retaining the sheet resistance in the range of 10-20 Ω sq(-1). The high transmittance provides an excellent opportunity to improve the power-conversion efficiency of organic solar cells (OSCs) by successfully matching the transmittance spectral range of the electrode to the optimal absorption region of low band gap photoactive polymers, which is highly limited in OSCs utilizing conventional ITO/Ag/ITO electrodes. An improvement of the power-conversion efficiency from 4.72 to 5.88% is achieved from highly flexible organic solar cells (OSCs) fabricated on poly(ethylene terephthalate) polymer substrates by replacing the conventional ITO/Ag/ITO electrode with the ITO/AgOx/ITO electrode. This novel transparent electrode can facilitate a cost-effective, high-throughput, room-temperature fabrication solution for producing large-area flexible OSCs on heat-sensitive polymer substrates with excellent power-conversion efficiencies.


Oxides/chemistry , Silver Compounds/chemistry , Solar Energy , Electric Conductivity , Electrodes , Oxygen/chemistry , Polymers/chemistry , Tin Compounds/chemistry
16.
ACS Appl Mater Interfaces ; 5(1): 164-72, 2013 Jan.
Article En | MEDLINE | ID: mdl-23214976

We report the fabrication of a highly flexible indium tin oxide (ITO) electrode that is completely transparent to light in the visible spectrum. The electrode was fabricated via the formation of a novel ITO nanoarray structure, consisting of discrete globular ITO nanoparticles superimposed on an agglomerated ITO layer, on a heat-sensitive polymer substrate. The ITO nanoarray spontaneously assembled on the surface of the polymer substrate by a simple sputter coating at room temperature, without nanolithographic or solution-based assembly processes being required. The ITO nanoarray exhibited a resistivity of approximately 2.3 × 10(-3) Ω cm and a specular transmission of about 99% at 550 nm, surpassing all previously reported values of these parameters in the case of transparent porous ITO electrodes synthesized via solution-based processes at elevated temperatures. This novel nanoarray structure and its fabrication methodology can be used for coating large-area transparent electrodes on heat-sensitive polymer substrates, a goal unrealizable through currently available solution-based fabrication methods.

17.
Nanoscale ; 4(22): 7221-30, 2012 Nov 21.
Article En | MEDLINE | ID: mdl-23073117

We report the direct coating of a novel antireflective (AR) nanoarray structure of silica nanoparticles on highly flexible polymer substrates by a conventional vacuum coating method using plasma-enhanced chemical vapor deposition. Globular-shaped silica nanoparticles are found to be self-arranged in a periodic pattern on subwavelength scales without the use of artificial assemblies that typically require complicated nanolithography or solution-based nanoparticle fabrication approaches. Highly efficient AR characteristics in the visible spectral range are obtained at optimized refractive indices by controlling the dimensions and average distances of the silica nanoparticle arrays in a level accuracy of tens of nanometers. The AR nanoarrays exhibit sufficient structural durability against the very high strain levels that arise from the flexibility of polymer substrates. This simple coating process provides a cost-effective, high-throughput, room-temperature fabrication solution for producing large-area polymer substrates with AR characteristics.

...