Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Neuron ; 103(4): 642-657.e7, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31255486

RESUMEN

Neuronal subtypes show diverse injury responses, but the molecular underpinnings remain elusive. Using transgenic mice that allow reliable visualization of axonal fate, we demonstrate that intrinsically photosensitive retinal ganglion cells (ipRGCs) are both resilient to cell death and highly regenerative. Using RNA sequencing (RNA-seq), we show genes that are differentially expressed in ipRGCs and that associate with their survival and axon regeneration. Strikingly, thrombospondin-1 (Thbs1) ranked as the most differentially expressed gene, along with the well-documented injury-response genes Atf3 and Jun. THBS1 knockdown in RGCs eliminated axon regeneration. Conversely, RGC overexpression of THBS1 enhanced regeneration in both ipRGCs and non-ipRGCs, an effect that was dependent on syndecan-1, a known THBS1-binding protein. All structural domains of the THBS1 were not equally effective; the trimerization and C-terminal domains promoted regeneration, while the THBS type-1 repeats were dispensable. Our results identify cell-type-specific induction of Thbs1 as a novel gene conferring high regenerative capacity.


Asunto(s)
Regeneración Nerviosa/fisiología , Células Ganglionares de la Retina/fisiología , Trombospondina 1/fisiología , Animales , Apoptosis , Axones/metabolismo , Línea Celular , Femenino , Perfilación de la Expresión Génica , Genes Reporteros , Factor I del Crecimiento Similar a la Insulina/deficiencia , Factor I del Crecimiento Similar a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Compresión Nerviosa , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/fisiopatología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Opsinas de Bastones/deficiencia , Opsinas de Bastones/fisiología , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/fisiología , Trombospondina 1/biosíntesis , Trombospondina 1/genética , Transcripción Genética
3.
Invest Ophthalmol Vis Sci ; 58(3): 1743-1750, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28324115

RESUMEN

Purpose: Enhanced regeneration of retinal ganglion cell (RGC) axons can be achieved by modification of numerous neuronal-intrinsic factors. However, axon growth initiation and the pathfinding behavior of these axons after traumatic injury remain poorly understood outside of acute injury paradigms, despite the clinical relevance of more chronic settings. We therefore examined RGC axon regeneration following therapeutic delivery that is postponed until 2 months after optic nerve crush injury. Methods: Optic nerve regeneration was induced by virally mediated (adeno-associated virus) ciliary neurotrophic factor (AAV-CNTF) administered either immediately or 56 days after optic nerve crush in wild-type or Bax knockout (KO) mice. Retinal ganglion nerve axon regeneration was assessed 21 and 56 days after viral injection. Immunohistochemical analysis of RGC injury signals and extrinsic factors in the optic nerve were also examined at 5 and 56 days post crush. Results: In addition to sustained expression of injury response proteins in surviving RGCs, we observe axon regrowth in wild-type and apoptosis-deficient Bax KO mice following AAV-CNTF treatment. Fewer instances of aberrant axon growth are seen, at least in the area near the lesion site, in animals given treatment 56 days after crush injury compared to the animals given treatment immediately after injury. We also find evidence of long distance growth into a visual target in Bax KO mice despite postponed initiation of this regenerative program. Conclusions: These studies provide evidence against an intrinsic critical period for RGC axon regeneration or degradation of injury signals. Regeneration results from Bax KO mice imply highly sustained regenerative capacity in RGCs, highlighting the importance of long-lasting neuroprotective strategies as well as of RGC axon guidance research in chronically injured animals.


Asunto(s)
Axones/patología , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/patología , Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Animales , Axones/metabolismo , Western Blotting , Recuento de Células , Supervivencia Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Estudios de Seguimiento , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo , Proteína X Asociada a bcl-2/metabolismo
4.
J Comp Neurol ; 525(2): 380-388, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27350178

RESUMEN

In the adult mammalian central nervous system (CNS), axonal damage often triggers neuronal cell death and glial activation, with very limited spontaneous axon regeneration. In this study, we performed optic nerve injury in adult naked mole-rats, the longest living rodent, with a maximum life span exceeding 30 years, and found that injury responses in this species are quite distinct from those in other mammalian species. In contrast to what is seen in other mammals, the majority of injured retinal ganglion cells (RGCs) survive with relatively high spontaneous axon regeneration. Furthermore, injured RGCs display activated signal transducer and activator of transcription-3 (STAT3), whereas astrocytes in the optic nerve robustly occupy and fill the lesion area days after injury. These neuron-intrinsic and -extrinsic injury responses are reminiscent of those in "cold-blooded" animals, such as fish and amphibians, suggesting that the naked mole-rat is a powerful model for exploring the mechanisms of neuronal injury responses and axon regeneration in mammals. J. Comp. Neurol. 525:380-388, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/fisiopatología , Células Ganglionares de la Retina/fisiología , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Inmunohistoquímica , Ratas Topo , Ratas
5.
Cell Rep ; 15(2): 398-410, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27050520

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor central to axon regrowth with an enigmatic ability to act in different subcellular regions independently of its transcriptional roles. However, its roles in mature CNS neurons remain unclear. Here, we show that along with nuclear translocation, STAT3 translocates to mitochondria in mature CNS neurons upon cytokine stimulation. Loss- and gain-of-function studies using knockout mice and viral expression of various STAT3 mutants demonstrate that STAT3's transcriptional function is indispensable for CNS axon regrowth, whereas mitochondrial STAT3 enhances bioenergetics and further potentiates regrowth. STAT3's localization, functions, and growth-promoting effects are regulated by mitogen-activated protein kinase kinase (MEK), an effect further enhanced by Pten deletion, leading to extensive axon regrowth in the mouse optic pathway and spinal cord. These results highlight CNS neuronal dependence on STAT3 transcriptional activity, with mitochondrial STAT3 providing ancillary roles, and illustrate a critical contribution for MEK in enhancing diverse STAT3 functions and axon regrowth.


Asunto(s)
Envejecimiento/metabolismo , Axones/metabolismo , Sistema Nervioso Central/metabolismo , Mitocondrias/metabolismo , Factor de Transcripción STAT3/metabolismo , Transcripción Genética , Adenosina Trifosfato/metabolismo , Animales , Factor Neurotrófico Ciliar/farmacología , Transporte de Electrón/efectos de los fármacos , Femenino , Eliminación de Gen , Masculino , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Dominios Proteicos , Transporte de Proteínas , Tractos Piramidales/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción STAT3/química , Relación Estructura-Actividad , Fracciones Subcelulares/metabolismo
6.
J Neurosci ; 34(46): 15347-55, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25392502

RESUMEN

Mammalian target of rapamycin (mTOR) functions as a master sensor of nutrients and energy, and controls protein translation and cell growth. Deletion of phosphatase and tensin homolog (PTEN) in adult CNS neurons promotes regeneration of injured axons in an mTOR-dependent manner. However, others have demonstrated mTOR-independent axon regeneration in different cell types, raising the question of how broadly mTOR regulates axonal regrowth across different systems. Here we define the role of mTOR in promoting collateral sprouting of spared axons, a key axonal remodeling mechanism by which functions are recovered after CNS injury. Using pharmacological inhibition, we demonstrate that mTOR is dispensable for the robust spontaneous sprouting of corticospinal tract axons seen after pyramidotomy in postnatal mice. In contrast, moderate spontaneous axonal sprouting and induced-sprouting seen under different conditions in young adult mice (i.e., PTEN deletion or degradation of chondroitin proteoglycans; CSPGs) are both reduced upon mTOR inhibition. In addition, to further determine the potency of mTOR in promoting sprouting responses, we coinactivate PTEN and CSPGs, and demonstrate that this combination leads to an additive increase in axonal sprouting compared with single treatments. Our findings reveal a developmental switch in mTOR dependency for inducing axonal sprouting, and indicate that PTEN deletion in adult neurons neither recapitulates the regrowth program of postnatal animals, nor is sufficient to completely overcome an inhibitory environment. Accordingly, exploiting mTOR levels by targeting PTEN combined with CSPG degradation represents a promising strategy to promote extensive axonal plasticity in adult mammals.


Asunto(s)
Axones/fisiología , Lesiones Encefálicas/fisiopatología , Regeneración Nerviosa/fisiología , Serina-Treonina Quinasas TOR/fisiología , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Lesiones Encefálicas/patología , Condroitina ABC Liasa/farmacología , Proteoglicanos Tipo Condroitín Sulfato/antagonistas & inhibidores , Proteoglicanos Tipo Condroitín Sulfato/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Regeneración Nerviosa/efectos de los fármacos , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/fisiología , Tractos Piramidales/efectos de los fármacos , Tractos Piramidales/lesiones , Tractos Piramidales/fisiología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...