Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 135(3): 572-583, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439235

RESUMEN

Cardiovascular disease is an enormous public health problem, particularly in older populations. Exercise is the most potent cardioprotective intervention identified to date, with exercise in the juvenile period potentially imparting greater protection, given the plasticity of the developing heart. To test the hypothesis that voluntary wheel running early in life would be cardioprotective later in life when risk for disease is high, we provided male and female juvenile (3 wk old) mice access to a running wheel for 2 wk. Mice then returned to a home cage to age to adulthood (4-6 mo) before exposure to isoproterenol (ISO) to induce cardiac stress. Cardiac function and remodeling were compared with sedentary control mice, sedentary mice exposed to ISO, and mice that exercised in adulthood immediately before ISO. Early in life activity protected against ISO-induced stress as evidenced by attenuated cardiac mass, myocyte size, and fibrosis compared with sedentary mice exposed to ISO. ISO-induced changes in cardiac function were ameliorated in male mice that engaged in wheel running, with ejection fraction and fractional shortening reversed to control values. Adrenergic receptor expression was downregulated in juvenile male runners. This suppression persisted in adulthood following ISO, providing a putative mechanism by which exercise in the young male heart provides resilience to cardiac stress later in life. Together, we show that activity early in life induces persistent cardiac changes that attenuate ISO-induced stress in adulthood. Identification of the mechanisms by which early in life exercise is protective will yield valuable insights into how exercise is medicine across the life course.NEW & NOTEWORTHY Voluntary wheel running activity early in life induces persistent changes in the heart that attenuate isoproterenol-induced hypertrophy and fibrosis in adulthood. Though the mechanisms of this protection remain incompletely understood, activity-induced downregulation of adrenergic receptor expression early in life may contribute to later protection against adrenergic stress. Together these data suggest that efforts to maintain an active lifestyle early in life may have long-lasting cardioprotective benefits.


Asunto(s)
Cardiopatías , Actividad Motora , Masculino , Femenino , Ratones , Animales , Isoproterenol/farmacología , Actividad Motora/fisiología , Cardiopatías/metabolismo , Receptores Adrenérgicos/metabolismo , Fibrosis , Ejercicio Físico , Miocitos Cardíacos/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 325(2): H278-H292, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389952

RESUMEN

Right ventricular (RV) function is the strongest predictor of survival in age-related heart failure as well as other clinical contexts in which aging populations suffer significant morbidity and mortality. However, despite the significance of maintaining RV function with age and disease, mechanisms of RV failure remain poorly understood and no RV-directed therapies exist. The antidiabetic drug and AMP-activated protein kinase (AMPK) activator metformin protects against left ventricular dysfunction, suggesting cardioprotective properties may translate to the RV. Here, we aimed to understand the impact of advanced age on pulmonary hypertension (PH)-induced right ventricular dysfunction. We further aimed to test whether metformin is cardioprotective in the RV and whether the protection afforded by metformin requires cardiac AMPK. We used a murine model of PH by exposing adult (4-6 mo) and aged (18 mo) male and female mice to hypobaric hypoxia (HH) for 4 wk. Cardiopulmonary remodeling was exacerbated in aged mice compared with adult mice as evidenced by elevated RV weight and impaired RV systolic function. Metformin attenuated HH-induced RV dysfunction but only in adult male mice. Metformin still protected the adult male RV even in the absence of cardiac AMPK. Together, we suggest that aging exacerbates PH-induced RV remodeling and that metformin may represent a therapeutic option for this disease in a sex- and age-dependent manner, but in an AMPK-independent manner. Ongoing efforts are aimed at elucidating the molecular basis for RV remodeling as well as delineating the mechanisms of cardioprotection provided by metformin in the absence of cardiac AMPK.NEW & NOTEWORTHY Right ventricular (RV) function predicts survival in age-related disease, yet mechanisms of RV failure are unclear. We show that aged mice undergo exacerbated RV remodeling compared with young. We tested the AMPK activator metformin to improve RV function and show that metformin attenuates RV remodeling only in adult male mice via a mechanism that does not require cardiac AMPK. Metformin is therapeutic for RV dysfunction in an age- and sex-specific manner independent of cardiac AMPK.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Metformina , Disfunción Ventricular Derecha , Masculino , Ratones , Femenino , Animales , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/prevención & control , Metformina/farmacología , Proteínas Quinasas Activadas por AMP , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/prevención & control , Disfunción Ventricular Derecha/tratamiento farmacológico , Función Ventricular Derecha , Remodelación Ventricular , Modelos Animales de Enfermedad
3.
Geroscience ; 45(4): 2545-2557, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37118350

RESUMEN

Right heart failure (RHF) is a common and deadly disease in aged populations. Extra-cardiac outcomes of RHF such as skeletal muscle atrophy contribute to morbidity and mortality. Despite the significance of maintaining right ventricular (RV) and muscle function, the mechanisms of RHF and muscle atrophy are unclear. Metformin (MET) improves cardiac and muscle function through the regulation of metabolism and the cellular stress response. However, whether MET is a viable therapeutic for RHF and muscle atrophy is not yet known. We used deuterium oxide labeling to measure individual protein turnover in the RV as well as subcellular skeletal muscle proteostasis in aged male mice subjected to 4 weeks of hypobaric hypoxia (HH)-induced RHF. Mice exposed to HH had elevated RV mass and impaired RV systolic function, neither of which was prevented by MET. HH resulted in a higher content of glycolytic, cardiac, and antioxidant proteins in the RV, most of which were inhibited by MET. The synthesis of these key RV proteins was generally unchanged by MET, suggesting MET accelerated protein breakdown. HH resulted in a loss of skeletal muscle mass due to inhibited protein synthesis alongside myofibrillar protein breakdown. MET did not impact HH-induced muscle protein turnover and did not prevent muscle wasting. Together, we show tissue-dependent responses to HH-induced RHF where the RV undergoes hypertrophic remodeling with higher expression of metabolic and stress response proteins. Skeletal muscle undergoes loss of protein mass and atrophy, primarily due to myofibrillar protein breakdown. MET did not prevent HH-induced RV dysfunction or muscle wasting, suggesting that the identification of other therapies to attenuate RHF and concomitant muscle atrophy is warranted.


Asunto(s)
Insuficiencia Cardíaca , Masculino , Ratones , Animales , Miocardio/metabolismo , Ventrículos Cardíacos/metabolismo , Atrofia Muscular
4.
J Biol Rhythms ; 38(3): 290-304, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36802963

RESUMEN

Circadian misalignment occurs with age, jet lag, and shift work, leading to maladaptive health outcomes including cardiovascular diseases. Despite the strong link between circadian disruption and heart disease, the cardiac circadian clock is poorly understood, prohibiting identification of therapies to restore the broken clock. Exercise is the most cardioprotective intervention identified to date and has been suggested to reset the circadian clock in other peripheral tissues. Here, we tested the hypothesis that conditional deletion of core circadian gene Bmal1 would disrupt cardiac circadian rhythm and function and that this disruption would be ameliorated by exercise. To test this hypothesis, we generated a transgenic mouse with spatial and temporal deletion of Bmal1 only in adult cardiac myocytes (Bmal1 cardiac knockout [cKO]). Bmal1 cKO mice demonstrated cardiac hypertrophy and fibrosis concomitant with impaired systolic function. This pathological cardiac remodeling was not rescued by wheel running. While the molecular mechanisms responsible for the profound cardiac remodeling are unclear, it does not appear to involve activation of the mammalian target of rapamycin (mTOR) signaling or changes in metabolic gene expression. Interestingly, cardiac deletion of Bmal1 disrupted systemic rhythms as evidenced by changes in the onset and phasing of activity in relationship to the light/dark cycle and by decreased periodogram power as measured by core temperature, suggesting cardiac clocks can regulate systemic circadian output. Together, we suggest a critical role for cardiac Bmal1 in regulating both cardiac and systemic circadian rhythm and function. Ongoing experiments will determine how disruption of the circadian clock causes cardiac remodeling in an effort to identify therapeutics to attenuate the maladaptive outcomes of a broken cardiac circadian clock.


Asunto(s)
Relojes Circadianos , Cardiopatías , Ratones , Animales , Ritmo Circadiano/genética , Actividad Motora/fisiología , Relojes Circadianos/genética , Ratones Transgénicos , Ratones Noqueados , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Mamíferos/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-35419571

RESUMEN

Aging promotes structural and functional remodeling of the heart, even in the absence of external factors. There is growing clinical and experimental evidence supporting the existence of sex-specific patterns of cardiac aging, and in some cases, these sex differences emerge early in life. Despite efforts to identify sex-specific differences in cardiac aging, understanding how these differences are established and regulated remains limited. In addition to contributing to sex differences in age-related heart disease, sex differences also appear to underlie differential responses to cardiac stress such as adrenergic activation. Identifying the underlying mechanisms of sex-specific differences may facilitate the characterization of underlying heart disease phenotypes, with the ultimate goal of utilizing sex-specific therapeutic approaches for cardiac disease. The purpose of this review is to discuss the mechanisms and implications of sex-specific cardiac aging, how these changes render the heart more susceptible to disease, and how we can target age- and sex-specific differences to advance therapies for both male and female patients.

6.
Physiol Rep ; 9(13): e14940, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34245129

RESUMEN

Risk for heart disease increases with advanced age and differs between sexes, with females generally protected from heart disease until menopause. Despite these epidemiological observations, the molecular mechanisms that underlie sex-specific differences in cardiac function have not been fully described. We used high throughput transcriptomics in juvenile (5 weeks), adult (4-6 months), and aged (18 months) male and female mice to understand how cardiac gene expression changes across the life course and by sex. While male gene expression profiles differed between juvenile-adult and juvenile-aged (254 and 518 genes, respectively), we found no significant differences in adult-aged gene expression. Females had distinct gene expression changes across the life course with 1835 genes in juvenile-adult and 1328 in adult-aged. Analysis of differentially expressed genes (DEGs) suggests that juvenile to adulthood genes were clustered in cell cycle and development-related pathways in contrast to adulthood-aged which were characterized by immune-and inflammation-related pathways. Analysis of sex differences within each age suggests that juvenile and aged cardiac transcriptomes are different between males and females, with significantly fewer DEGs identified in adult males and females. Interestingly, the male-female differences in early age were distinct from those in advanced age. These findings are in contrast to expected sex differences historically attributed to estrogen and could not be explained by estrogen-direct mechanisms alone as evidenced by juvenile sexual immaturity and reproductive incompetence in the aged mice. Together, distinct trajectories in cardiac transcriptomic profiles highlight fundamental sex differences across the life course and demonstrate the need for the consideration of age and sex as biological variables in heart disease.


Asunto(s)
Perfilación de la Expresión Génica , Expresión Génica , Miocardio/metabolismo , Factores de Edad , Envejecimiento/fisiología , Animales , Femenino , Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteómica , Análisis de Secuencia de ARN , Factores Sexuales
7.
Geroscience ; 43(4): 1799-1813, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33651247

RESUMEN

The aging heart is well-characterized by a diminished responsiveness to adrenergic activation. However, the precise mechanisms by which age and sex impact adrenergic-mediated cardiac function remain poorly described. In the current investigation, we compared the cardiac response to adrenergic stress to gain mechanistic understanding of how the response to an adrenergic challenge differs by sex and age. Juvenile (4 weeks), adult (4-6 months), and aged (18-20 months) male and female mice were treated with the ß-agonist isoproterenol (ISO) for 1 week. ISO-induced morphometric changes were age- and sex-dependent as juvenile and adult mice of both sexes had higher left ventricle weights while aged mice did not increase cardiac mass. Adults increased myocyte cell size and deposited fibrotic matrix in response to ISO, while juvenile and aged animals did not show evidence of hypertrophy or fibrosis. Juvenile females and adults underwent expected changes in systolic function with higher heart rate, ejection fraction, and fractional shortening. However, cardiac function in aged animals was not altered in response to ISO. Transcriptomic analysis identified significant differences in gene expression by age and sex, with few overlapping genes and pathways between groups. Fibrotic and adrenergic signaling pathways were upregulated in adult hearts. Juvenile hearts upregulated genes in the adrenergic pathway with few changes in fibrosis, while aged mice robustly upregulated fibrotic gene expression without changes in adrenergic genes. We suggest that the response to adrenergic stress significantly differs across the lifespan and by sex. Mechanistic definition of these age-related pathways by sex is critical for future research aimed at treating age-related cardiac adrenergic desensitization.


Asunto(s)
Agonistas Adrenérgicos beta , Miocitos Cardíacos , Adrenérgicos , Agonistas Adrenérgicos beta/farmacología , Animales , Femenino , Isoproterenol/farmacología , Longevidad , Masculino , Ratones
8.
Genetics ; 212(1): 93-110, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30918007

RESUMEN

Sk-2 is a meiotic drive element that was discovered in wild populations of Neurospora fungi over 40 years ago. While early studies quickly determined that Sk-2 transmits itself through sexual reproduction in a biased manner via spore killing, the genetic factors responsible for this phenomenon have remained mostly unknown. Here, we identify and characterize rfk-1, a gene required for Sk-2-based spore killing. The rfk-1 gene contains four exons, three introns, and two stop codons, the first of which undergoes RNA editing to a tryptophan codon during sexual development. Translation of an unedited rfk-1 transcript in vegetative tissue is expected to produce a 102-amino acid protein, whereas translation of an edited rfk-1 transcript in sexual tissue is expected to produce a protein with 130 amino acids. These findings indicate that unedited and edited rfk-1 transcripts exist and that these transcripts could have different roles with respect to the mechanism of meiotic drive by spore killing. Regardless of RNA editing, spore killing only succeeds if rfk-1 transcripts avoid silencing caused by a genome defense process called meiotic silencing by unpaired DNA (MSUD). We show that rfk-1's MSUD avoidance mechanism is linked to the genomic landscape surrounding the rfk-1 gene, which is located near the Sk-2 border on the right arm of chromosome III. In addition to demonstrating that the location of rfk-1 is critical to spore-killing success, our results add to accumulating evidence that MSUD helps protect Neurospora genomes from complex meiotic drive elements.


Asunto(s)
Proteínas Fúngicas/metabolismo , Meiosis , Neurospora/metabolismo , Edición de ARN , Esporas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Neurospora/genética , Neurospora/fisiología , Esporas Fúngicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...