Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 80: 101863, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182007

RESUMEN

OBJECTIVE: The insulin/IGF superfamily is conserved across vertebrates and invertebrates. Our team has identified five viruses containing genes encoding viral insulin/IGF-1 like peptides (VILPs) closely resembling human insulin and IGF-1. This study aims to characterize the impact of Mandarin fish ranavirus (MFRV) and Lymphocystis disease virus-Sa (LCDV-Sa) VILPs on the insulin/IGF system for the first time. METHODS: We chemically synthesized single chain (sc, IGF-1 like) and double chain (dc, insulin like) forms of MFRV and LCDV-Sa VILPs. Using cell lines overexpressing either human insulin receptor isoform A (IR-A), isoform B (IR-B) or IGF-1 receptor (IGF1R), and AML12 murine hepatocytes, we characterized receptor binding, insulin/IGF signaling. We further characterized the VILPs' effects of proliferation and IGF1R and IR gene expression, and compared them to native ligands. Additionally, we performed insulin tolerance test in CB57BL/6 J mice to examine in vivo effects of VILPs on blood glucose levels. Finally, we employed cryo-electron microscopy (cryoEM) to analyze the structure of scMFRV-VILP in complex with the IGF1R ectodomain. RESULTS: VILPs can bind to human IR and IGF1R, stimulate receptor autophosphorylation and downstream signaling pathways. Notably, scMFRV-VILP exhibited a particularly strong affinity for IGF1R, with a mere 10-fold decrease compared to human IGF-1. At high concentrations, scMFRV-VILP selectively reduced IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation (Ras/MAPK pathway), while leaving Akt phosphorylation (PI3K/Akt pathway) unaffected, indicating a potential biased inhibitory function. Prolonged exposure to MFRV-VILP led to a significant decrease in IGF1R gene expression in IGF1R overexpressing cells and AML12 hepatocytes. Furthermore, insulin tolerance test revealed scMFRV-VILP's sustained glucose-lowering effect compared to insulin and IGF-1. Finally, cryo-EM analysis revealed that scMFRV-VILP engages with IGF1R in a manner closely resembling IGF-1 binding, resulting in a highly analogous structure. CONCLUSIONS: This study introduces MFRV and LCDV-Sa VILPs as novel members of the insulin/IGF superfamily. Particularly, scMFRV-VILP exhibits a biased inhibitory effect on IGF1R signaling at high concentrations, selectively inhibiting IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation, without affecting Akt phosphorylation. In addition, MFRV-VILP specifically regulates IGF-1R gene expression and IGF1R protein levels without affecting IR. CryoEM analysis confirms that scMFRV-VILP' binding to IGF1R is mirroring the interaction pattern observed with IGF-1. These findings offer valuable insights into IGF1R action and inhibition, suggesting potential applications in development of IGF1R specific inhibitors and advancing long-lasting insulins.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Receptor IGF Tipo 1 , Humanos , Animales , Ratones , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Microscopía por Crioelectrón , Insulina/metabolismo , Isoformas de Proteínas/metabolismo , Expresión Génica
2.
Open Biol ; 13(11): 230142, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37935358

RESUMEN

The insulin receptor (IR, with its isoforms IR-A and IR-B) and the insulin-like growth factor 1 receptor (IGF-1R) are related tyrosine kinase receptors. Recently, the portfolio of solved hormone-receptor structures has grown extensively thanks to advancements in cryo-electron microscopy. However, the dynamics of how these receptors transition between their inactive and active state are yet to be fully understood. The C-terminal part of the alpha subunit (αCT) of the receptors is indispensable for the formation of the hormone-binding site. We mutated the αCT residues Arg717 and His710 of IR-A and Arg704 and His697 of IGF-1R. We then measured the saturation binding curves of ligands on the mutated receptors and their ability to become activated. Mutations of Arg704 and His697 to Ala in IGF-1R decreased the binding of IGF-1. Moreover, the number of binding sites for IGF-1 on the His697 IGF-1R mutant was reduced to one-half, demonstrating the presence of two binding sites. Both mutations of Arg717 and His710 to Ala in IR-A inactivated the receptor. We have proved that Arg717 is important for the binding of insulin to its receptor, which suggests that Arg717 is a key residue for the transition to the active conformation.


Asunto(s)
Receptor IGF Tipo 1 , Receptor de Insulina , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/química , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ligandos , Microscopía por Crioelectrón , Insulina/metabolismo
3.
Vitam Horm ; 123: 187-230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37717985

RESUMEN

Elucidating how insulin and the related insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) bind to their cellular receptors (IR and IGF-1R) and how the receptors are activated has been the holy grail for generations of scientists. However, deciphering the 3D structure of tyrosine kinase receptors and their hormone-bound complexes has been complicated by the flexible and dimeric nature of the receptors and the dynamic nature of their interaction with hormones. Therefore, mutagenesis of hormones and kinetic studies first became an important tool for studying receptor interactions. It was suggested that hormones could bind to receptors through two binding sites on the hormone surface called site 1 and site 2. A breakthrough in knowledge came with the solution of cryoelectron microscopy (cryoEM) structures of hormone-receptor complexes. In this chapter, we document in detail the mutagenesis of insulin, IGF-1, and IGF-2 with emphasis on modifications of the hypothetical binding site 2 in the hormones, and we discuss the results of structure-activity studies in light of recent cryoEM structures of hormone complexes with IR and IGF-1R.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina , Insulina , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Cinética , Microscopía por Crioelectrón , Mutación , Sitios de Unión
4.
Commun Biol ; 6(1): 863, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598269

RESUMEN

Insulin-like Growth Factor-2 (IGF2) is important for the regulation of human embryonic growth and development, and for adults' physiology. Incorrect processing of the IGF2 precursor, pro-IGF2(156), leads to the formation of two IGF2 proforms, big-IGF2(87) and big-IGF2(104). Unprocessed and mainly non-glycosylated IGF2 proforms are found at abnormally high levels in certain diseases, but their mode of action is still unclear. Here, we found that pro-IGF2(156) has the lowest ability to form its inactivating complexes with IGF-Binding Proteins and has higher proliferative properties in cells than IGF2 and other IGF prohormones. We also showed that big-IGF2(104) has a seven-fold higher binding affinity for the IGF2 receptor than IGF2, and that pro-IGF2(87) binds and activates specific receptors and stimulates cell growth similarly to the mature IGF2. The properties of these pro-IGF2 forms, especially of pro-IGF2(156) and big-IGF2(104), indicate them as hormones that may be associated with human diseases related to the accumulation of IGF-2 proforms in the circulation.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina , Péptidos y Proteínas de Señalización Intercelular , Adulto , Humanos , Proliferación Celular , Ciclo Celular , Mitógenos
5.
J Pept Sci ; 29(7): e3478, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36633503

RESUMEN

Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide. These peptides differ from each other by the structure of the covalent bridge connecting positions 11 and 18. In addition to the peptide with a disulfide bridge, a derivative with a dicarba bridge and three derivatives with a 1,2,3-triazole differing from each other by the presence of sulfur or oxygen in their staples were prepared. The strongest binding to IR was exhibited by the peptide with a disulfide bridge. All other derivatives only weakly bound to IR, and a relationship between increasing bridge length and lower binding affinity can be inferred. Despite their nanomolar affinities, none of the prepared peptide mimetics was able to activate the insulin receptor even at high concentrations, but all mimetics were able to inhibit insulin-induced receptor activation. However, the receptor remained approximately 30% active even at the highest concentration of the agents; thus, the agents behave as partial antagonists. An interesting observation is that these mimetic peptides do not antagonize insulin action in proportion to their binding affinities. The compounds characterized in this study show that it is possible to modulate the functional properties of insulin receptor peptide ligands using disulfide mimetics.


Asunto(s)
Insulina , Receptor de Insulina , Insulina/metabolismo , Disulfuros/química , Péptidos/química
6.
Open Biol ; 12(12): 220322, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36541100

RESUMEN

Insulin is stored in vivo inside the pancreatic ß-cell insulin secretory granules. In vitro studies have led to an assumption that high insulin and Zn2+ concentrations inside the pancreatic ß-cell insulin secretory granules should promote insulin crystalline state in the form of Zn2+-stabilized hexamers. Electron microscopic images of thin sections of the pancreatic ß-cells often show a dense, regular pattern core, suggesting the presence of insulin crystals. However, the structural features of the storage forms of insulin in native preparations of secretory granules are unknown, because of their small size, fragile character and difficult handling. We isolated and investigated the secretory granules from MIN6 cells under near-native conditions, using cryo-electron microscopic (Cryo-EM) techniques. The analysis of these data from multiple intra-granular crystals revealed two different rhomboidal crystal lattices. The minor lattice has unit cell parameters (a ≃ b ≃ 84.0 Å, c ≃ 35.2 Å), similar to in vitro crystallized human 4Zn2+-insulin hexamer, whereas the largely prevalent unit cell has more than double c-axis (a ≃ b ≃ c ≃ 96.5 Å) that probably corresponds to two or three insulin hexamers in the asymmetric unit. Our experimental data show that insulin can be present in pancreatic MIN6 cell granules in a microcrystalline form, probably consisting of 4Zn2+-hexamers of this hormone.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Insulina , Microscopía Electrónica
7.
Org Biomol Chem ; 20(12): 2446-2454, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35253830

RESUMEN

Preptin is a 34-amino-acid-long peptide derived from the E-domain of a precursor of insulin-like growth factor 2 (pro-IGF2) with bone-anabolic and insulin secretion amplifying properties. Here, we describe the synthesis, structures, and biological activities of six shortened analogues of human preptin. Eight- and nine-amino-acid-long peptide amides corresponding to the C-terminal part of human preptin were stabilised by two types of staples to induce a higher proportion of helicity in their secondary structure. We monitored the secondary structure of the stapled peptides using circular dichroism. The biological effect of the structural changes was determined afterwards by the ability of peptides to stimulate the release of intracellular calcium ions. We confirmed the previous observation that the stabilisation of the disordered conformation of human preptin has a deleterious effect on biological potency. However, surprisingly, one of our preptin analogues, a nonapeptide stabilised by olefin metathesis between positions 3 and 7 of the amino acid chain, had a similar ability to stimulate calcium ions' release to the full-length human preptin. Our findings could open up new ways to design new preptin analogues, which may have potential as drugs for the treatment of diabetes and osteoporosis.


Asunto(s)
Calcio , Factor II del Crecimiento Similar a la Insulina , Huesos , Humanos , Factor II del Crecimiento Similar a la Insulina/química , Fragmentos de Péptidos/química , Péptidos
8.
J Med Chem ; 64(19): 14848-14859, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34591477

RESUMEN

Insulin is a lifesaver for millions of diabetic patients. There is a need for new insulin analogues with more physiological profiles and analogues that will be thermally more stable than human insulin. Here, we describe the chemical engineering of 48 insulin analogues that were designed to have changed binding specificities toward isoforms A and B of the insulin receptor (IR-A and IR-B). We systematically modified insulin at the C-terminus of the B-chain, at the N-terminus of the A-chain, and at A14 and A18 positions. We discovered an insulin analogue that has Cα-carboxyamidated Glu at B31 and Ala at B29 and that has a more than 3-fold-enhanced binding specificity in favor of the "metabolic" IR-B isoform. The analogue is more resistant to the formation of insulin fibrils at 37 °C and is also more efficient in mice than human insulin. Therefore, [AlaB29,GluB31,amideB31]-insulin may be interesting for further clinical evaluation.


Asunto(s)
Antígenos CD/metabolismo , Insulina/análogos & derivados , Agregado de Proteínas , Isoformas de Proteínas/metabolismo , Receptor de Insulina/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos CD/química , Calorimetría/métodos , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Masculino , Ratones Endogámicos C57BL , Fosforilación , Unión Proteica , Isoformas de Proteínas/química , Receptor de Insulina/química
9.
Anal Bioanal Chem ; 413(17): 4531-4543, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34050775

RESUMEN

We adapted a radioligand receptor binding assay for measuring insulin levels in unknown samples. The assay enables rapid and accurate determination of insulin concentrations in experimental samples, such as from insulin-secreting cells. The principle of the method is based on the binding competition of insulin in a measured sample with a radiolabeled insulin for insulin receptor (IR) in IM-9 cells. Both key components, radiolabeled insulin and IM-9 cells, are commercially available. The IR binding assay was used to determine unknown amounts of insulin secreted by MIN6 ß cell line after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. The experimental data obtained by the IR binding assay were compared to the results determined by RIA kits and both methods showed a very good agreement of results. We observed the stimulation of glucose-induced insulin secretion from MIN6 cells by arginine, weaker stimulation by ornithine, but inhibitory effects of dopamine. Serotonin effects were either stimulatory or inhibitory, depending on the concentration of serotonin used. The results will require further investigation. The study also clearly revealed advantages of the IR binding assay that allows the measuring of a higher throughput of measured samples, with a broader range of concentrations than in the case of RIA kits. The IR binding assay can provide an alternative to standard RIA and ELISA assays for the determination of insulin levels in experimental samples and can be especially useful in scientific laboratories studying insulin production and secretion by ß cells and searching for new modulators of insulin secretion.


Asunto(s)
Secreción de Insulina , Insulina/análisis , Insulina/metabolismo , Animales , Arginina/metabolismo , Línea Celular , Dopamina/metabolismo , Glucosa/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ornitina/metabolismo , Radioinmunoensayo/métodos , Ensayo de Unión Radioligante/métodos , Ratas , Ratas Wistar , Serotonina/metabolismo
10.
Mol Metab ; 44: 101121, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33220491

RESUMEN

OBJECTIVE: Members of the insulin/insulin-like growth factor (IGF) superfamily are well conserved across the evolutionary tree. We recently showed that four viruses in the Iridoviridae family possess genes that encode proteins highly homologous to human insulin/IGF-1. Using chemically synthesized single-chain (sc), i.e., IGF-1-like, forms of the viral insulin/IGF-1-like peptides (VILPs), we previously showed that they can stimulate human receptors. Because these peptides possess potential cleavage sites to form double chain (dc), i.e., more insulin-like, VILPs, in this study, we have characterized dc forms of VILPs for Grouper iridovirus (GIV), Singapore grouper iridovirus (SGIV) and Lymphocystis disease virus-1 (LCDV-1) for the first time. METHODS: The dcVILPs were chemically synthesized. Using murine fibroblast cell lines overexpressing insulin receptor (IR-A or IR-B) or IGF1R, we first determined the binding affinity of dcVILPs to the receptors and characterized post-receptor signaling. Further, we used C57BL/6J mice to study the effect of dcVILPs on lowering blood glucose. We designed a 3-h dcVILP in vivo infusion experiment to determine the glucose uptake in different tissues. RESULTS: GIV and SGIV dcVILPs bind to both isoforms of human insulin receptor (IR-A and IR-B) and to the IGF1R, and for the latter, show higher affinity than human insulin. These dcVILPs stimulate IR and IGF1R phosphorylation and post-receptor signaling in vitro and in vivo. Both GIV and SGIV dcVILPs stimulate glucose uptake in mice. In vivo infusion experiments revealed that while insulin (0.015 nmol/kg/min) and GIV dcVILP (0.75 nmol/kg/min) stimulated a comparable glucose uptake in heart and skeletal muscle and brown adipose tissue, GIV dcVILP stimulated 2-fold higher glucose uptake in white adipose tissue (WAT) compared to insulin. This was associated with increased Akt phosphorylation and glucose transporter type 4 (GLUT4) gene expression compared to insulin in WAT. CONCLUSIONS: Our results show that GIV and SGIV dcVILPs are active members of the insulin superfamily with unique characteristics. Elucidating the mechanism of tissue specificity for GIV dcVILP will help us to better understand insulin action, design new analogs that specifically target the tissues and provide new insights into their potential role in disease.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Insulina/genética , Insulina/metabolismo , Iridovirus/genética , Tejido Adiposo Pardo/metabolismo , Animales , Antígenos CD , Línea Celular , Glucosa/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulinas/metabolismo , Iridoviridae/genética , Ratones , Ratones Endogámicos C57BL , Fosforilación , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal
11.
Open Biol ; 10(10): 200137, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33081637

RESUMEN

Insulin is produced and stored inside the pancreatic ß-cell secretory granules, where it is assumed to form Zn2+-stabilized oligomers. However, the actual storage forms of this hormone and the impact of zinc ions on insulin production in vivo are not known. Our initial X-ray fluorescence experiment on granules from native Langerhans islets and insulinoma-derived INS-1E cells revealed a considerable difference in the zinc content. This led our further investigation to evaluate the impact of the intra-granular Zn2+ levels on the production and storage of insulin in different model ß-cells. Here, we systematically compared zinc and insulin contents in the permanent INS-1E and BRIN-BD11 ß-cells and in the native rat pancreatic islets by flow cytometry, confocal microscopy, immunoblotting, specific messenger RNA (mRNA) and total insulin analysis. These studies revealed an impaired insulin production in the permanent ß-cell lines with the diminished intracellular zinc content. The drop in insulin and Zn2+ levels was paralleled by a lower expression of ZnT8 zinc transporter mRNA and hampered proinsulin processing/folding in both permanent cell lines. To summarize, we showed that the disruption of zinc homeostasis in the model ß-cells correlated with their impaired insulin and ZnT8 production. This indicates a need for in-depth fundamental research about the role of zinc in insulin production and storage.


Asunto(s)
Expresión Génica , Células Secretoras de Insulina/metabolismo , Insulina/genética , Insulina/metabolismo , Zinc/metabolismo , Animales , Fraccionamiento Químico , Gránulos Citoplasmáticos/metabolismo , Citometría de Flujo/métodos , Glucosa/metabolismo , Células Secretoras de Insulina/ultraestructura , Islotes Pancreáticos/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Transportador 8 de Zinc
12.
J Labelled Comp Radiopharm ; 63(14): 576-581, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32909277

RESUMEN

Preparation of both 125 I-labeled insulin and insulin-like growth factor 1 (IGF-1) was critical because it enabled a detailed characterization of binding properties of these important hormones towards their cognate transmembrane receptors. Binding modes of hundreds of hormone derivatives were analyzed using competition radioligand binding assays. This effort has resulted in development of six insulin analogs that are today clinically used for the treatment of diabetes. Here, we will briefly summarize a history of insulin research employing iodinated hormones.


Asunto(s)
Insulina/química , Insulina/metabolismo , Animales , Humanos , Marcaje Isotópico
13.
PLoS One ; 15(9): e0238393, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32877466

RESUMEN

Insulin-like growth factors 2 and 1 (IGF2 and IGF1) and insulin are closely related hormones that are responsible for the regulation of metabolic homeostasis, development and growth of the organism. Physiological functions of insulin and IGF1 are relatively well-studied, but information about the role of IGF2 in the body is still sparse. Recent discoveries called attention to emerging functions of IGF2 in the brain, where it could be involved in processes of learning and memory consolidation. It was also proposed that these functions could be mediated by the receptor for IGF2 (IGF2R). Nevertheless, little is known about the mechanism of signal transduction through this receptor. Here we produced His-tagged domain 11 (D11), an IGF2-binding element of IGF2R; we immobilized it on the solid support through a well-defined sandwich, consisting of neutravidin, biotin and synthetic anti-His-tag antibodies. Next, we prepared specifically radiolabeled [125I]-monoiodotyrosyl-Tyr2-IGF2 and optimized a sensitive and robust competitive radioligand binding assay for determination of the nanomolar binding affinities of hormones for D11 of IGF2. The assay will be helpful for the characterization of new IGF2 mutants to study the functions of IGF2R and the development of new compounds for the treatment of neurological disorders.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina/metabolismo , Receptor IGF Tipo 2/inmunología , Receptor IGF Tipo 2/ultraestructura , Unión Competitiva , Células Cultivadas , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Radioisótopos de Yodo , Unión Proteica , Ensayo de Unión Radioligante/métodos , Transducción de Señal
14.
J Biol Chem ; 294(46): 17371-17382, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31558604

RESUMEN

Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2. Here, to resolve this discrepancy, we mutated these insulin residues and the equivalent residues in IGFs. Our findings revealed that equivalent mutations in the hormones can result in differential biological effects and that these effects can be receptor-specific. We noted that the insulin positions A10 and A17 are important for its binding to IR-A and IR-B and IGF-1R and that A13 is important only for IR-A and IR-B binding. The IGF-1/IGF-2 positions 51/50 and 54/53 did not appear to play critical roles in receptor binding, but mutations at IGF-1 position 58 and IGF-2 position 57 affected the binding. We propose that IGF-1 Glu-58 interacts with IGF-1R Arg-704 and belongs to IGF-1 site 1, a finding supported by the NMR structure of the less active Asp-58-IGF-1 variant. Computational analyses indicated that the aforementioned mutations can affect internal insulin dynamics and inhibit adoption of a receptor-bound conformation, important for binding to receptor site 1. We provide a molecular model and alternative hypotheses for how the mutated insulin residues affect activity.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/química , Insulina/química , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Anomalías Múltiples/genética , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Trastornos del Crecimiento/genética , Humanos , Insulina/análogos & derivados , Insulina/síntesis química , Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/química , Factor II del Crecimiento Similar a la Insulina/genética , Mutación/genética , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/genética , Dominios Proteicos/genética , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética
15.
Elife ; 82019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30747103

RESUMEN

Cone snails have evolved a variety of insulin-like molecules that may help with the development of better treatments for diabetes.


Asunto(s)
Diabetes Mellitus , Ponzoñas , Animales , Ligandos , Venenos de Moluscos , Péptidos , Receptor de Insulina , Vertebrados
16.
Anal Chim Acta ; 1052: 170-178, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30685036

RESUMEN

A new method, pressure assisted partial filling affinity capillary electrophoresis, has been developed to study noncovalent molecular interactions of the hexamer of human insulin (HI) with biologically relevant ligands, basic phenolic neurotransmitters serotonin and dopamine, basic amino acid arginine, and very weakly acidic phenol, in alkaline aqueous media. The apparent binding constants, Kb, of the HI-ligand complexes were determined from the dependence of the effective migration time changes of the above ligands on the variable zone lengths of HI hexamer dissolved in the background electrolyte (BGE) and hydrodynamically introduced into the bare fused silica capillary close to the UV detector. The strong cationic electroosmotic flow (EOF) in alkaline BGEs, 40/40 mM Tris/tricine, pH 8.1, and 25/34 mM NaOH/tricine, pH 8.5, with EOF mobilities 52.0 × 10-9 and 58.0 × 10-9 m2V-1s-1, respectively, was reduced by the hydrodynamic counter flow induced by external pressure at the outlet capillary end to avoid expulsion of HI zone out of the capillary and to allow HI interaction with both cationic and anionic ligands inside the capillary. The HI hexamer interactions with the above ligands were found to be weak to moderately strong, with Kb values in the range 385-1314 L mol-1, and decreasing in the order HI-phenol > HI-dopamine > HI-serotonin > HI-arginine.


Asunto(s)
Electroforesis Capilar/métodos , Insulina/química , Insulina/metabolismo , Presión , Multimerización de Proteína , Secuencia de Aminoácidos , Arginina/metabolismo , Dopamina/metabolismo , Humanos , Ligandos , Fenol/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Serotonina/metabolismo
17.
J Biol Chem ; 293(43): 16818-16829, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30213860

RESUMEN

Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase-type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-HisB24, GlyB31, TyrB32]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-HisB24, GlyB31, TyrB32]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-HisB24, GlyB31, TyrB32]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin.


Asunto(s)
Insulina/agonistas , Insulina/metabolismo , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Factor I del Crecimiento Similar a la Insulina/química , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Cinética , Unión Proteica , Receptor IGF Tipo 1 , Receptor de Insulina/química , Receptor de Insulina/genética , Receptores de Somatomedina/química , Receptores de Somatomedina/genética
18.
Biochemistry ; 57(16): 2373-2382, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29608283

RESUMEN

Insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively) are protein hormones involved not only in normal growth and development but also in life span regulation and cancer. They exert their functions mainly through the IGF-1R or by binding to isoform A of the insulin receptor (IR-A). The development of IGF-1 and IGF-2 antagonists is of great clinical interest. Mutations of A4 and A8 sites of human insulin lead to disproportionate effects on hormone IR binding and activation. Here, we systematically modified IGF-1 sites 45, 46, and 49 and IGF-2 sites 45 and 48, which correspond, or are close, to insulin sites A4 and A8. The IGF-1R and IR-A binding and autophosphorylation potencies of these analogues were characterized. They retained the main IGF-1R-related properties, but the hormones with His49 in IGF-1 and His48 in IGF-2 showed significantly higher affinities for IR-A and for IR-B, being the strongest IGF-1- and IGF-2-like binders of these receptors ever reported. All analogues activated IR-A and IGF-1R without major discrepancies in their binding affinities. This study revealed that IR-A and IGF-1R contain specific sites, likely parts of their so-called sites 2', which can interact differently with specifically modified IGF analogues. Moreover, a clear importance of IGF-2 site 44 for effective hormone folding was also observed. These findings may facilitate novel and rational engineering of new hormone analogues for IR-A and IGF-1R studies and for potential medical applications.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina/química , Factor I del Crecimiento Similar a la Insulina/química , Receptor de Insulina/química , Receptores de Somatomedina/genética , Evolución Molecular , Humanos , Insulina/química , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/genética , Ligandos , Mutación , Fosforilación , Unión Proteica , Isoformas de Proteínas , Receptor IGF Tipo 1 , Receptor de Insulina/metabolismo , Receptores de Somatomedina/química , Transducción de Señal
19.
J Med Chem ; 60(24): 10105-10117, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29172484

RESUMEN

Human insulin-like growth factor 1 (IGF-1) is a 70 amino acid protein hormone, with key impact on growth, development, and lifespan. The physiological and clinical importance of IGF-1 prompted challenging chemical and biological trials toward the development of its analogs as molecular tools for the IGF-1 receptor (IGF1-R) studies and as new therapeutics. Here, we report a new method for the total chemical synthesis of IGF-1 analogs, which entails the solid-phase synthesis of two IGF-1 precursor chains that is followed by the CuI-catalyzed azide-alkyne cycloaddition ligation and by biomimetic formation of a native pattern of disulfides. The connection of the two IGF-1 precursor chains by the triazole-containing moieties, and variation of its neighboring sequences (Arg36 and Arg37), was tolerated in IGF-1R binding and its activation. These new synthetic IGF-1 analogs are unique examples of disulfide bonds' rich proteins with intra main-chain triazole links. The methodology reported here also presents a convenient synthetic platform for the design and production of new analogs of this important human hormone with non-standard protein modifications.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/análogos & derivados , Animales , Arginina/química , Química Clic , Cobre/química , Reacción de Cicloadición , Disulfuros/química , Evaluación Preclínica de Medicamentos/métodos , Fibroblastos , Humanos , Factor I del Crecimiento Similar a la Insulina/síntesis química , Factor I del Crecimiento Similar a la Insulina/química , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Metionina/química , Ratones , Células 3T3 NIH/efectos de los fármacos , Fosforilación , Dominios Proteicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Técnicas de Síntesis en Fase Sólida , Triazoles/química
20.
Artículo en Inglés | MEDLINE | ID: mdl-28798723

RESUMEN

A significant drawback of the exogenous administration of insulin to diabetics is the non-physiological profile of insulin action resulting in the insufficient suppression of hepatic glucose production, which is the main contributing factor to diabetic hyperglycemia under fasting conditions and the basis of the challenge to restore a more physiological glucose profile in diabetes. The insulin receptor (IR) exists in two alternatively spliced variants, IR-A and IR-B, with different tissue distribution. While peripheral tissues contain different proportions of both isoforms, hepatic cells almost exclusively contain IR-B. In this respect, IR-B-selective insulin analogs would be of great interest for their potential to restore more natural metabolic homeostasis in diabetes. Recent advances in the structural biology of insulin and IR have provided new clues for understanding the interaction of both proteins. This article discusses and offers some structural perspectives for the design of specific insulin analogs with a preferential binding to IR-B.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA