Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 84(18): 2985-3003, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38885318

RESUMEN

Increasing evidence supports the interplay between oncogenic mutations and immune escape mechanisms. Strategies to counteract the immune escape mediated by oncogenic signaling could provide improved therapeutic options for patients with various malignancies. As mutant calreticulin (CALR) is a common driver of myeloproliferative neoplasms (MPN), we analyzed the impact of oncogenic CALRdel52 on the bone marrow (BM) microenvironment in MPN. Single-cell RNA sequencing revealed that CALRdel52 led to the expansion of TGFß1-producing erythroid progenitor cells and promoted the expansion of FoxP3+ regulatory T cells (Treg) in a murine MPN model. Treatment with an anti-TGFß antibody improved mouse survival and increased the glycolytic activity in CD4+ and CD8+ T cells in vivo, whereas T-cell depletion abrogated the protective effects conferred by neutralizing TGFß. TGFß1 reduced perforin and TNFα production by T cells in vitro. TGFß1 production by CALRdel52 cells was dependent on JAK1/2, PI3K, and ERK activity, which activated the transcription factor Sp1 to induce TGFß1 expression. In four independent patient cohorts, TGFß1 expression was increased in the BM of patients with MPN compared with healthy individuals, and the BM of patients with MPN contained a higher frequency of Treg compared with healthy individuals. Together, this study identified an ERK/Sp1/TGFß1 axis in CALRdel52 MPNs as a mechanism of immunosuppression that can be targeted to elicit T-cell-mediated cytotoxicity. Significance: Targeting the mutant calreticulin/TGFß1 axis increases T-cell activity and glycolytic capacity, providing the rationale for conducting clinical trials on TGFß antagonists as an immunotherapeutic strategy in patients with myeloproliferative neoplasms.


Asunto(s)
Calreticulina , Trastornos Mieloproliferativos , Linfocitos T Reguladores , Microambiente Tumoral , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Calreticulina/metabolismo , Animales , Humanos , Ratones , Trastornos Mieloproliferativos/inmunología , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/patología , Microambiente Tumoral/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Médula Ósea/inmunología , Médula Ósea/metabolismo , Escape del Tumor/inmunología , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/metabolismo , Mutación
2.
Sci Transl Med ; 16(751): eadj9672, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865481

RESUMEN

Cancer treatment with anti-PD-1 immunotherapy can cause central nervous system immune-related adverse events (CNS-irAEs). The role of microglia in anti-PD-1 immunotherapy-induced CNS-irAEs is unclear. We found that anti-PD-1 treatment of mice caused morphological signs of activation and major histocompatibility complex (MHC) class II up-regulation on microglia. Functionally, anti-PD-1 treatment induced neurocognitive deficits in mice, independent of T cells, B cells, and natural killer cells. Instead, we found that microglia mediated these CNS-irAEs. Single-cell RNA sequencing revealed major transcriptional changes in microglia upon anti-PD-1 treatment. The anti-PD-1 effects were mediated by anti-PD-1 antibodies interacting directly with microglia and were not secondary to peripheral T cell activation. Using a proteomics approach, we identified spleen tyrosine kinase (Syk) as a potential target in activated microglia upon anti-PD-1 treatment. Syk inhibition reduced microglia activation and improved neurocognitive function without impairing anti-melanoma effects. Moreover, we analyzed CNS tissue from a patient cohort that had received anti-PD-1 treatment. Imaging mass cytometry revealed that anti-PD-1 treatment of patients was associated with increased surface marker expression indicative of microglia activation. In summary, we identified a disease-promoting role for microglia in CNS-irAEs driven by Syk and provide an inhibitor-based approach to interfere with this complication after anti-PD-1 immunotherapy.


Asunto(s)
Sistema Nervioso Central , Inmunoterapia , Microglía , Receptor de Muerte Celular Programada 1 , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Inmunoterapia/efectos adversos , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Humanos , Sistema Nervioso Central/patología , Sistema Nervioso Central/efectos de los fármacos , Ratones Endogámicos C57BL , Quinasa Syk/metabolismo , Ratones
3.
Nat Cancer ; 5(8): 1227-1249, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38741011

RESUMEN

Cancer immunotherapy with chimeric antigen receptor (CAR) T cells can cause immune effector cell-associated neurotoxicity syndrome (ICANS). However, the molecular mechanisms leading to ICANS are not well understood. Here we examined the role of microglia using mouse models and cohorts of individuals with ICANS. CD19-directed CAR (CAR19) T cell transfer in B cell lymphoma-bearing mice caused microglia activation and neurocognitive deficits. The TGFß-activated kinase-1 (TAK1)-NF-κB-p38 MAPK pathway was activated in microglia after CAR19 T cell transfer. Pharmacological TAK1 inhibition or genetic Tak1 deletion in microglia using Cx3cr1CreER:Tak1fl/fl mice resulted in reduced microglia activation and improved neurocognitive activity. TAK1 inhibition allowed for potent CAR19-induced antilymphoma effects. Individuals with ICANS exhibited microglia activation in vivo when studied by translocator protein positron emission tomography, and imaging mass cytometry revealed a shift from resting to activated microglia. In summary, we prove a role for microglia in ICANS pathophysiology, identify the TAK1-NF-κB-p38 MAPK axis as a pathogenic signaling pathway and provide a rationale to test TAK1 inhibition in a clinical trial for ICANS prevention after CAR19 T cell-based cancer immunotherapy.


Asunto(s)
Quinasas Quinasa Quinasa PAM , Microglía , Síndromes de Neurotoxicidad , Receptores Quiméricos de Antígenos , Animales , Ratones , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Microglía/inmunología , Microglía/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/inmunología , Humanos , Receptores Quiméricos de Antígenos/inmunología , Inmunoterapia Adoptiva/métodos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Linfoma de Células B/inmunología , Antígenos CD19/inmunología , Femenino , Linfocitos T/inmunología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA