Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Intervalo de año de publicación
1.
Ann Bot ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953500

RESUMEN

Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It takes part of specific developmental programs and maintains the organism homeostasis in response to unfavourable environments. Bryophytes could provide with valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to the ones present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programs, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.

2.
Methods Mol Biol ; 2447: 185-192, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35583782

RESUMEN

Ferroptosis is an oxidative iron-dependent cell death that was recently described in vertebrates, invertebrates, fungi, plants, and bacteria. In plants, ferroptosis has been reported in response to heat shock in roots of 6-day-old Arabidopsis thaliana seedlings. Generally, all biochemical and morphological ferroptosis hallmarks are conserved between animals and plants. Here, we describe a protocol to induce and quantify ferroptosis in plants based on the analysis of dead cells with a Sytox Green stain. Furthermore, heat shock induced cell death is prevented by using specific ferroptosis inhibitors.


Asunto(s)
Arabidopsis , Ferroptosis , Animales , Arabidopsis/metabolismo , Muerte Celular , Peroxidación de Lípido , Oxidación-Reducción , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Biochem J ; 479(7): 857-866, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35438135

RESUMEN

Regulated cell death (RCD) is an essential process that plays key roles along the plant life cycle. Unlike accidental cell death, which is an uncontrolled biological process, RCD involves integrated signaling cascades and precise molecular-mediated mechanisms that are triggered in response to specific exogenous or endogenous stimuli. Ferroptosis is a cell death pathway characterized by the iron-dependent accumulation of lipid reactive oxygen species. Although first described in animals, ferroptosis in plants shares all the main core mechanisms observed for ferroptosis in other systems. In plants as in animals, oxidant and antioxidant systems outline the process of lipid peroxidation during ferroptosis. In plants, cellular compartments such as mitochondria, chloroplasts and cytosol act cooperatively and coordinately to respond to changing redox environments. This particular context makes plants a unique model to study redox status regulation and cell death. In this review, we focus on our most recent understanding of the regulation of redox state and lipid peroxidation in plants and their role during ferroptosis.


Asunto(s)
Ferroptosis , Animales , Hierro/metabolismo , Peroxidación de Lípido , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046016

RESUMEN

Mitochondrial adrenodoxins (ADXs) are small iron-sulfur proteins with electron transfer properties. In animals, ADXs transfer electrons between an adrenodoxin reductase (ADXR) and mitochondrial P450s, which is crucial for steroidogenesis. Here we show that a plant mitochondrial steroidogenic pathway, dependent on an ADXR-ADX-P450 shuttle, is essential for female gametogenesis and early embryogenesis through a maternal effect. The steroid profile of maternal and gametophytic tissues of wild-type (WT) and adxr ovules revealed that homocastasterone is the main steroid present in WT gametophytes and that its levels are reduced in the mutant ovules. The application of exogenous homocastasterone partially rescued adxr and P450 mutant phenotypes, indicating that gametophytic homocastasterone biosynthesis is affected in the mutants and that a deficiency of this hormone causes the phenotypic alterations observed. These findings also suggest not only a remarkable similarity between steroid biosynthetic pathways in plants and animals but also a common function during sexual reproduction.


Asunto(s)
Adrenodoxina/metabolismo , Arabidopsis/embriología , Ferredoxina-NADP Reductasa/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/fisiología , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/fisiología , Desarrollo Embrionario/genética , Gametogénesis/fisiología , Células Germinativas de las Plantas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fitosteroles/biosíntesis , Unión Proteica
5.
Mol Microbiol ; 116(1): 109-125, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33550595

RESUMEN

Diatoms are unicellular organisms containing red algal-derived plastids that probably originated as result of serial endosymbioses between an ancestral heterotrophic organism and a red alga or cryptophyta algae from which has only the chloroplast left. Diatom mitochondria are thus believed to derive from the exosymbiont. Unlike animals and fungi, diatoms seem to contain ancestral respiratory chains. In support of this, genes encoding gamma type carbonic anhydrases (CAs) whose products were shown to be intrinsic complex I subunits in plants, Euglena and Acanthamoeba were found in diatoms, a representative of Stramenopiles. In this work, we experimentally show that mitochondrial complex I in diatoms is a large complex containing gamma type CA subunits, supporting an ancestral origin. By using a bioinformatic approach, a complex I integrated CA domain with heterotrimeric subunit composition is proposed.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Diatomeas/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Secuencia de Aminoácidos , Anhidrasas Carbónicas/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Diatomeas/genética , Complejo I de Transporte de Electrón/genética , Evolución Molecular , Mitocondrias/genética , Filogenia , RNA-Seq , Rhodophyta/genética , Alineación de Secuencia , Simbiosis/genética
6.
J Exp Bot ; 72(6): 2125-2135, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32918080

RESUMEN

Regulated cell death plays key roles during essential processes throughout the plant life cycle. It takes part in specific developmental programs and maintains homeostasis of the organism in response to unfavorable environments. Ferroptosis is a recently discovered iron-dependent cell death pathway characterized by the accumulation of lipid reactive oxygen species. In plants, ferroptosis shares all the main hallmarks described in other systems. Those specific features include biochemical and morphological signatures that seem to be conserved among species. However, plant cells have specific metabolic pathways and a high degree of metabolic compartmentalization. Together with their particular morphology, these features add more complexity to the plant ferroptosis pathway. In this review, we summarize the most recent advances in elucidating the roles of ferroptosis in plants, focusing on specific triggers, the main players, and underlying pathways.


Asunto(s)
Ferroptosis , Muerte Celular , Hierro , Peroxidación de Lípido , Especies Reactivas de Oxígeno
7.
Int J Dev Biol ; 65(4-5-6): 187-194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32930346

RESUMEN

The cytochrome P450 superfamily is a large enzymatic protein family that is widely distributed along diverse kingdoms. In plants, cytochrome P450 monooxygenases (CYPs) participate in a vast array of pathways leading to the synthesis and modification of multiple metabolites with variable and important functions during different stages of plant development. This includes the biosynthesis and degradation of a great assortment of compounds implicated in a variety of physiological responses, such as signaling and defense, organ patterning and the biosynthesis of structural polymers, among others. In this review, we summarize the characteristics of the different families of plant CYPs, focusing on the most recent advances in elucidating the roles of CYPs in plant growth and development and more specifically, during plant gametogenesis, fertilization and embryogenesis.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Plantas , Sistema Enzimático del Citocromo P-450/genética , Genes de Plantas , Desarrollo de la Planta , Plantas/enzimología , Plantas/genética
8.
Plant Cell Environ ; 44(7): 2134-2149, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33058168

RESUMEN

Sensing and response to high temperatures are crucial to prevent heat-related damage and to preserve cellular and metabolic functions. The response to heat stress is a complex and coordinated process that involves several subcellular compartments and multi-level regulatory networks that are synchronized to avoid cell damage while maintaining cellular homeostasis. In this review, we provide an insight into the most recent advances in elucidating the molecular mechanisms involved in heat stress sensing and response in Marchantia polymorpha. Based on the signaling pathways and genes that were identified in Marchantia, our analyses indicate that although with specific particularities, the core components of the heat stress response seem conserved in bryophytes and angiosperms. Liverworts not only constitute a powerful tool to study heat stress response and signaling pathways during plant evolution, but also provide key and simple mechanisms to cope with extreme temperatures. Given the increasing prevalence of high temperatures around the world as a result of global warming, this knowledge provides a new set of molecular tools with potential agronomical applications.


Asunto(s)
Respuesta al Choque Térmico/fisiología , Marchantia/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Front Plant Sci ; 11: 599247, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329663

RESUMEN

In flowering plants, pollen tubes undergo a journey that starts in the stigma and ends in the ovule with the delivery of the sperm cells to achieve double fertilization. The pollen cell wall plays an essential role to accomplish all the steps required for the successful delivery of the male gametes. This extended path involves female tissue recognition, rapid hydration and germination, polar growth, and a tight regulation of cell wall synthesis and modification, as its properties change not only along the pollen tube but also in response to guidance cues inside the pistil. In this review, we focus on the most recent advances in elucidating the molecular mechanisms involved in the regulation of cell wall synthesis and modification during pollen germination, pollen tube growth, and rupture.

10.
Plant Cell Physiol ; 61(6): 1080-1094, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32163154

RESUMEN

The Arabidopsis genome encodes >450 proteins containing the pentatricopeptide repeat (PPR) motif. The PPR proteins are classified into two groups, termed as P and P Long-Short (PLS) classes. Typically, the PLS subclass proteins are mainly involved in the RNA editing of mitochondrial and chloroplast transcripts, whereas most of the analyzed P subclass proteins have been mainly implicated in RNA metabolism, such as 5' or 3' transcript stabilization and processing, splicing and translation. Mutations of PPR genes often result in embryogenesis and altered seedling developmental defect phenotypes, but only a limited number of ppr mutants have been characterized in detail. In this report, we show that null mutations in the EMB2794 gene result in embryo arrest, due to altered splicing of nad2 transcripts in the Arabidopsis mitochondria. In angiosperms, nad2 has five exons that are transcribed individually from two mitochondrial DNA regions. Biochemical and in vivo analyses further indicate that recombinant or transgenic EMB2794 proteins bind to the nad2 pre-mRNAs in vitro as well as in vivo, suggesting a role for this protein in trans-splicing of nad2 intron 2 and possibly in the stability of the second pre-mRNA of nad2. Homozygous emb2794 lines, showing embryo-defective phenotypes, can be partially rescued by the addition of sucrose to the growth medium. Mitochondria of rescued homozygous mutant plants contain only traces of respiratory complex I, which lack the NADH-dehydrogenase activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Proteínas Mitocondriales/metabolismo , NADH Deshidrogenasa/metabolismo , ARN Mensajero/metabolismo , Arabidopsis/enzimología , Perfilación de la Expresión Génica , Potencial de la Membrana Mitocondrial , Mutación , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/metabolismo , Transcriptoma
11.
Plant Cell Physiol ; 60(5): 986-998, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668784

RESUMEN

Mitochondrial Nicotinamide adenine dinucleotide (NADH) dehydrogenase complex is the first complex of the mitochondrial electron transfer chain. In plants and in a variety of eukaryotes except Opisthokonta, complex I (CI) contains an extra spherical domain called carbonic anhydrase (CA) domain. This domain is thought to be composed of trimers of gamma type CA and CA-like subunits. In Arabidopsis, the CA gene family contains five members (CA1, CA2, CA3, CAL1 and CAL2). The CA domain appears to be crucial for CI assembly and is essential for normal embryogenesis. As CA and CA-like proteins are arranged in trimers to form the CA domain, it is possible for the complex to adopt different arrangements that might be tissue-specific or have specialized functions. In this work, we show that the proportion of specific CI changes in a tissue-specific manner. In immature seeds, CI assembly may be indistinctly dependent on CA1, CA2 or CA3. However, in adult plant tissues (or tissues derived from stem cells, as cell cultures), CA2-dependent CI is clearly the most abundant. This difference might account for specific physiological functions. We present evidence suggesting that CA3 does not interact with any other CA family member. As CA3 was found to interact with CI FRO1 (NDUFS4) subunit, which is located in the matrix arm, this suggests a role for CA3 in assembly and stability of CI.


Asunto(s)
Arabidopsis/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Semillas/metabolismo , Proteínas de Arabidopsis/metabolismo , Anhidrasas Carbónicas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
12.
J Cell Biol ; 216(2): 463-476, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28100685

RESUMEN

In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)-induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient.


Asunto(s)
Arabidopsis/metabolismo , Respuesta al Choque Térmico , Calor , Hierro/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Arabidopsis/efectos de los fármacos , Ácido Ascórbico/metabolismo , Muerte Celular , Evolución Molecular , Glutatión/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Quelantes del Hierro/farmacología , Peroxidación de Lípido , Microscopía Fluorescente , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Tiempo
13.
Physiol Plant ; 157(3): 289-96, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26829901

RESUMEN

The mitochondrial NADH dehydrogenase complex (complex I) consists of several functional domains which independently arose during evolution. In higher plants, it contains an additional domain which includes proteins resembling gamma-type carbonic anhydrases. The Arabidopsis genome codes for five complex I-integrated gamma-type carbonic anhydrases (γCA1, γCA2, γCA3, γCAL1, γCAL2), but only three copies of this group of proteins form an individual extra domain. Biochemical analyses revealed that the domain is composed of one copy of either γCAL1 or γCAL2 plus two copies of the γCA1/γCA2 proteins. Thus, the carbonic anhydrase domain can have six distinct subunit configurations. Single and double mutants with respect to the γCA/γCAL proteins were employed to genetically dissect the function of the domain. New insights into complex I biology in plants will be reviewed and discussed.


Asunto(s)
Arabidopsis/enzimología , Anhidrasas Carbónicas/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/genética , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación
14.
J Exp Bot ; 67(5): 1589-603, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26721503

RESUMEN

The NADH-ubiquinone oxidoreductase [complex I (CI), EC 1.6.5.3] of the mitochondrial respiratory chain is the principal entry point of electrons, and vital in maintaining metabolism and the redox balance. In a variety of eukaryotic organisms, except animal and fungi (Opisthokonta), it contains an extra domain composed of putative gamma carbonic anhydrases subunits, named the CA domain, which was proposed to be essential for complex I assembly. There are two kinds of carbonic anhydrase subunits: CAs (of which there are three) and carbonic anhydrase-like proteins (CALs) (of which there are two). In plants, the CA domain has been linked to photorespiration. In this work, we report that Arabidopsis mutant plants affected in two specific CA subunits show a lethal phenotype. Double homozygous knockouts ca1ca2 embryos show a significant developmental delay compared to the non-homozygous embryos, which show a wild-type (WT) phenotype in the same silique. Mutant embryos show impaired mitochondrial membrane potential and mitochondrial reactive oxygen species (ROS) accumulation. The characteristic embryo greening does not take place and fewer but larger oil bodies are present. Although seeds look dark brown and wrinkled, they are able to germinate 12 d later than WT seeds. However, they die immediately, most likely due to oxidative stress.Since the CA domain is required for complex I biogenesis, it is predicted that in ca1ca2 mutants no complex I could be formed, triggering the lethal phenotype. The in vivo composition of a functional CA domain is proposed.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/metabolismo , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Arabidopsis/genética , Gametogénesis en la Planta/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Silenciador del Gen , Genes de Plantas , Heterocigoto , Homocigoto , Peróxido de Hidrógeno/metabolismo , Gotas Lipídicas/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Mutación/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo , Plantones/metabolismo , Semillas/genética , Semillas/fisiología , Autofecundación , Relación Estructura-Actividad , Superóxidos/metabolismo
15.
Plant J ; 83(5): 831-44, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26148112

RESUMEN

The NADH-ubiquinone oxidoreductase complex (complex I) (EC 1.6.5.3) is the main entrance site of electrons into the respiratory chain. In a variety of eukaryotic organisms, except animals and fungi (Opisthokonta), it contains an extra domain comprising trimers of putative γ-carbonic anhydrases, named the CA domain, which has been proposed to be essential for assembly of complex I. However, its physiological role in plants is not fully understood. Here, we report that Arabidopsis mutants defective in two CA subunits show an altered photorespiratory phenotype. Mutants grown in ambient air show growth retardation compared to wild-type plants, a feature that is reversed by cultivating plants in a high-CO2 atmosphere. Moreover, under photorespiratory conditions, carbon assimilation is diminished and glycine accumulates, suggesting an imbalance with respect to photorespiration. Additionally, transcript levels of specific CA subunits are reduced in plants grown under non-photorespiratory conditions. Taken together, these results suggest that the CA domain of plant complex I contributes to sustaining efficient photosynthesis under ambient (photorespiratory) conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Anhidrasas Carbónicas/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/genética , Complejo I de Transporte de Electrón/genética , Regulación de la Expresión Génica de las Plantas , Glicina/metabolismo , Mutación , Oxígeno/metabolismo , Fotosíntesis/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Estructura Terciaria de Proteína , Especies Reactivas de Oxígeno/metabolismo
17.
Mitochondrion ; 19 Pt B: 350-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24512842

RESUMEN

Plants alternate between two generations during their life cycle: the diploid sporophyte and the haploid male and female gametophytes, in which gametes are generated. In higher plants, the female gametophyte or embryo sac is a highly polarized seven-celled structure that develops within the sporophytic tissues of the ovule. It has been proposed that mitochondria are crucial in many cell signaling pathways controlling mitosis, cell specification, cell death and fertilization within the embryo sac. Here, we summarize recent findings that highlight the importance of this organelle during female gametophyte development and fertilization in plants.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Fenómenos Fisiológicos Celulares , Mitocondrias/genética , Mitocondrias/metabolismo , Óvulo Vegetal/genética , Fertilización
18.
Plant Signal Behav ; 8(10): doi: 10.4161/psb.25714, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23887494

RESUMEN

Previously considered as toxic by-products of aerobic metabolism, reactive oxygen species (ROS) are emerging as essential signaling molecules in eukaryotes. Recent evidence showed that maintenance of ROS homeostasis during female gametophyte development is crucial for embryo sac patterning and fertilization. Although ROS are exclusively detected in the central cell of mature embryo sacs, the study of mutants deficient in ROS homeostasis suggests that controlled oxidative bursts might take place earlier during gametophyte development. Also, a ROS burst that depends on pollination takes place inside the embryo sac. This oxidative response might be required for pollen tube growth arrest and for sperm cell release. In this mini-review, we will focus on new insights into the role of ROS during female gametophyte development and fertilization. Special focus will be made on the mitochondrial Mn-Superoxide dismutase (MSD1), which has been recently reported to be essential for maintaining ROS homeostasis during embryo sac formation.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semillas/embriología , Semillas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilización/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
19.
Plant Cell ; 25(5): 1573-91, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23653473

RESUMEN

Reactive oxygen species (ROS) can function as signaling molecules, regulating key aspects of plant development, or as toxic compounds leading to oxidative damage. In this article, we show that the regulation of ROS production during megagametogenesis is largely dependent on MSD1, a mitochondrial Mn-superoxide dismutase. Wild-type mature embryo sacs show ROS exclusively in the central cell, which appears to be the main source of ROS before pollination. Accordingly, MSD1 shows a complementary expression pattern. MSD1 expression is elevated in the egg apparatus at maturity but is downregulated in the central cell. The oiwa mutants are characterized by high levels of ROS detectable in both the central cell and the micropylar cells. Remarkably, egg apparatus cells in oiwa show central cell features, indicating that high levels of ROS result in the expression of central cell characteristic genes. Notably, ROS are detected in synergid cells after pollination. This ROS burst depends on stigma pollination but precedes fertilization, suggesting that embryo sacs sense the imminent arrival of pollen tubes and respond by generating an oxidative environment. Altogether, we show that ROS play a crucial role during female gametogenesis and fertilization. MSD1 activity seems critical for maintaining ROS localization and important for embryo sac patterning.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Óvulo Vegetal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo , Superóxido Dismutasa/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Fertilización/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Microscopía Fluorescente , Mitocondrias/enzimología , Mitocondrias/genética , Mutación , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Polinización/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Superóxido Dismutasa/genética
20.
Planta ; 237(3): 813-22, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23135328

RESUMEN

Recent findings demonstrate that alkaline/neutral invertases (A/N-Invs), enzymes that catalyze the breakdown of sucrose into glucose and fructose, are essential proteins in plant life. The fact that different isoforms are present in multiple locations makes them candidates for the coordination of metabolic processes. In the present study, we functionally characterized the encoding gene of a novel A/N-Inv (named A/N-InvC) from Arabidopsis, which localizes in mitochondria. A/N-InvC is expressed in roots, in aerial parts (shoots and leaves) and flowers. A detailed phenotypic analysis of knockout mutant plants (invc) reveals an impaired growth phenotype. Shoot growth was severely reduced, but root development was not affected as reported for A/N-InvA mutant (inva) plants. Remarkably, germination and flowering, two energy demanding processes, were the most affected stages. The effect of exogenous growth regulators led us to suggest that A/N-InvC may be modulating hormone balance in relation to the radicle emergence. We also show that oxygen consumption is reduced in inva and invc in comparison with wild-type plants, indicating that both organelle isoenzymes may play a fundamental role in mitochondrion functionality. Taken together, our results emphasize the involvement of mitochondrial A/N-Invs in developmental processes and uncover the possibility of playing different roles for the two isoforms located in the organelle.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Metabolismo Energético , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , beta-Fructofuranosidasa/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/citología , Arabidopsis/genética , Respiración de la Célula/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Flores/efectos de los fármacos , Flores/fisiología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Giberelinas/farmacología , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/genética , Mutación/genética , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Semillas/efectos de los fármacos , Semillas/enzimología , Semillas/crecimiento & desarrollo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , beta-Fructofuranosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...