Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Cybern ; 52(1): 215-227, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32217492

RESUMEN

Band selection has become a significant issue for the efficiency of the hyperspectral image (HSI) processing. Although many unsupervised band selection (UBS) approaches have been developed in the last decades, a flexible and robust method is still lacking. The lack of proper understanding of the HSI data structure has resulted in the inconsistency in the outcome of UBS. Besides, most of the UBS methods are either relying on complicated measurements or rather noise sensitive, which hinder the efficiency of the determined band subset. In this article, an adaptive distance-based band hierarchy (ADBH) clustering framework is proposed for UBS in HSI, which can help to avoid the noisy bands while reflecting the hierarchical data structure of HSI. With a tree hierarchy-based framework, we can acquire any number of band subset. By introducing a novel adaptive distance into the hierarchy, the similarity between bands and band groups can be computed straightforward while reducing the effect of noisy bands. Experiments on four datasets acquired from two HSI systems have fully validated the superiority of the proposed framework.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Análisis por Conglomerados
2.
IEEE Trans Cybern ; 52(7): 6158-6169, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34499610

RESUMEN

Singular spectral analysis (SSA) has recently been successfully applied to feature extraction in hyperspectral image (HSI), including conventional (1-D) SSA in spectral domain and 2-D SSA in spatial domain. However, there are some drawbacks, such as sensitivity to the window size, high computational complexity under a large window, and failing to extract joint spectral-spatial features. To tackle these issues, in this article, we propose superpixelwise adaptive SSA (SpaSSA), that is superpixelwise adaptive SSA for exploiting local spatial information of HSI. The extraction of local (instead of global) features, particularly in HSI, can be more effective for characterizing the objects within an image. In SpaSSA, conventional SSA and 2-D SSA are combined and adaptively applied to each superpixel derived from an oversegmented HSI. According to the size of the derived superpixels, either SSA or 2-D singular spectrum analysis (2D-SSA) is adaptively applied for feature extraction, where the embedding window in 2D-SSA is also adaptive to the size of the superpixel. Experimental results on the three datasets have shown that the proposed SpaSSA outperforms both SSA and 2D-SSA in terms of classification accuracy and computational complexity. By combining SpaSSA with the principal component analysis (SpaSSA-PCA), the accuracy of land-cover analysis can be further improved, outperforming several state-of-the-art approaches.

3.
IEEE J Biomed Health Inform ; 24(12): 3551-3563, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32997638

RESUMEN

The novel coronavirus disease 2019 (COVID-19) pandemic has led to a worldwide crisis in public health. It is crucial we understand the epidemiological trends and impact of non-pharmacological interventions (NPIs), such as lockdowns for effective management of the disease and control of its spread. We develop and validate a novel intelligent computational model to predict epidemiological trends of COVID-19, with the model parameters enabling an evaluation of the impact of NPIs. By representing the number of daily confirmed cases (NDCC) as a time-series, we assume that, with or without NPIs, the pattern of the pandemic satisfies a series of Gaussian distributions according to the central limit theorem. The underlying pandemic trend is first extracted using a singular spectral analysis (SSA) technique, which decomposes the NDCC time series into the sum of a small number of independent and interpretable components such as a slow varying trend, oscillatory components and structureless noise. We then use a mixture of Gaussian fitting (GF) to derive a novel predictive model for the SSA extracted NDCC incidence trend, with the overall model termed SSA-GF. Our proposed model is shown to accurately predict the NDCC trend, peak daily cases, the length of the pandemic period, the total confirmed cases and the associated dates of the turning points on the cumulated NDCC curve. Further, the three key model parameters, specifically, the amplitude (alpha), mean (mu), and standard deviation (sigma) are linked to the underlying pandemic patterns, and enable a directly interpretable evaluation of the impact of NPIs, such as strict lockdowns and travel restrictions. The predictive model is validated using available data from China and South Korea, and new predictions are made, partially requiring future validation, for the cases of Italy, Spain, the UK and the USA. Comparative results demonstrate that the introduction of consistent control measures across countries can lead to development of similar parametric models, reflected in particular by relative variations in their underlying sigma, alpha and mu values. The paper concludes with a number of open questions and outlines future research directions.


Asunto(s)
Inteligencia Artificial , COVID-19/terapia , COVID-19/epidemiología , COVID-19/virología , Humanos , SARS-CoV-2/aislamiento & purificación , España/epidemiología
4.
Addit Manuf ; 352020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33816132

RESUMEN

The layer-by-layer printing process of additive manufacturing methods provides new opportunities to embed identification codes inside parts during manufacture. These embedded codes can be used for product authentication and identification of counterfeits. The availability of reverse engineering tools has increased the risk of counterfeit part production and new authentication technologies such as the one proposed in this paper are required for many applications including aerospace components and medical implants and devices. The embedded codes are read by imaging techniques such as micro-Computed Tomography (micro-CT) scanners or radiography. The work presented in this paper is focused on developing methods that can improve the quality of the recovered micro-CT scanned code images such that they can be interpreted by standard code reader technology. Inherent low contrast and the presence of imaging artifacts are the main challenges that need to be addressed. Image processing methods are developed to address these challenges using titanium and aluminum alloy specimens containing embedded quick response (QR) codes. The proposed techniques for recovering the embedded codes are based on a combination of Mathematical Morphology and an innovative de-noising algorithm based on optimal image filtering techniques. The results show that the proposed methods are successful in making the codes scannable using readily available smartphone apps.

5.
Sensors (Basel) ; 19(6)2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30909489

RESUMEN

Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Interfaces Cerebro-Computador , Potenciales Evocados , Humanos , Análisis de Componente Principal , Procesamiento de Señales Asistido por Computador
6.
Sensors (Basel) ; 19(6)2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30889902

RESUMEN

Traditional industry is seeing an increasing demand for more autonomous and flexible manufacturing in unstructured settings, a shift away from the fixed, isolated workspaces where robots perform predefined actions repetitively. This work presents a case study in which a robotic manipulator, namely a KUKA KR90 R3100, is provided with smart sensing capabilities such as vision and adaptive reasoning for real-time collision avoidance and online path planning in dynamically-changing environments. A machine vision module based on low-cost cameras and color detection in the hue, saturation, value (HSV) space is developed to make the robot aware of its changing environment. Therefore, this vision allows the detection and localization of a randomly moving obstacle. Path correction to avoid collision avoidance for such obstacles with robotic manipulator is achieved by exploiting an adaptive path planning module along with a dedicated robot control module, where the three modules run simultaneously. These sensing/smart capabilities allow the smooth interactions between the robot and its dynamic environment, where the robot needs to react to dynamic changes through autonomous thinking and reasoning with the reaction times below the average human reaction time. The experimental results demonstrate that effective human-robot and robot-robot interactions can be realized through the innovative integration of emerging sensing techniques, efficient planning algorithms and systematic designs.

7.
Appl Spectrosc ; 70(9): 1582-8, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27145984

RESUMEN

Hyperspectral remote sensing is experiencing a dazzling proliferation of new sensors, platforms, systems, and applications with the introduction of novel, low-cost, low-weight sensors. Curiously, relatively little development is now occurring in the use of Fourier transform (FT) systems, which have the potential to operate at extremely high throughput without use of a slit or reductions in both spatial and spectral resolution that thin film based mosaic sensors introduce. This study introduces a new physics-based analytical framework called singular spectrum analysis (SSA) to process raw hyperspectral imagery collected with FT imagers that addresses some of the data processing issues associated with the use of the inverse FT. Synthetic interferogram data are analyzed using SSA, which adaptively decomposes the original synthetic interferogram into several independent components associated with the signal, photon and system noise, and the field illumination pattern.

8.
Appl Opt ; 53(20): 4440-9, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25090063

RESUMEN

Presented in a three-dimensional structure called a hypercube, hyperspectral imaging suffers from a large volume of data and high computational cost for data analysis. To overcome such drawbacks, principal component analysis (PCA) has been widely applied for feature extraction and dimensionality reduction. However, a severe bottleneck is how to compute the PCA covariance matrix efficiently and avoid computational difficulties, especially when the spatial dimension of the hypercube is large. In this paper, structured covariance PCA (SC-PCA) is proposed for fast computation of the covariance matrix. In line with how spectral data is acquired in either the push-broom or tunable filter method, different implementation schemes of SC-PCA are presented. As the proposed SC-PCA can determine the covariance matrix from partial covariance matrices in parallel even without prior deduction of the mean vector, it facilitates real-time data analysis while the hypercube is acquired. This has significantly reduced the scale of required memory and also allows efficient onsite feature extraction and data reduction to benefit subsequent tasks in coding and compression, transmission, and analytics of hyperspectral data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA