Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(22): 10221-10229, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38780069

RESUMEN

The reaction of equimolar trimethylsilyldiazomethyllithium (LiTMSD) with high spin (S = 2) PhB(AdIm)3FeCl (PhB(AdIm)3- = tris(3-adamantylimidazol-2-ylidene)phenylborate) affords the corresponding N-nitrilimido complex PhB(AdIm)3Fe-N═N═C(SiMe3). This complex can be converted to the thermodynamically more favorable C-isocyanoamido isomer PhB(AdIm)3Fe-C═N═N(SiMe3) by reaction with an additional equivalent of LiTMSD. While the iron(II) complexes are four-coordinate, the diazomethane is bound side-on in the iron(I) congener PhB(AdIm)3Fe(N,N'-κ2-N2C(H)Si(CH3)3). The latter complex adopts high spin (S = 3/2) ground state and features an unusually weak C-H bond. Photolysis of the iron(II) complexes induces N═N bond cleavage, with the iron(II) cyanide PhB(AdIm)3Fe-C≡N and iron(IV) nitride PhB(AdIm)3Fe≡N complexes being the major products of the reaction. The same products are obtained when the iron(I) complex is photolyzed or treated with a fluoride source. The trimethylsilyldiazomethane-derived ligand disassembly reactions are contrasted with those observed for related tris(carbene)amine complexes.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38515928

RESUMEN

Quantum objects, such as atoms, spins, and subatomic particles, have important properties due to their unique physical properties that could be useful for many different applications, ranging from quantum information processing to magnetic resonance imaging. Molecular species also exhibit quantum properties, and these properties are fundamentally tunable by synthetic design, unlike ions isolated in a quadrupolar trap, for example. In this comment, we collect multiple, distinct, scientific efforts into an emergent field that is devoted to designing molecules that mimic the quantum properties of objects like trapped atoms or defects in solids. Mimicry is endemic in inorganic chemistry and featured heavily in the research interests of groups across the world. We describe a new field of using inorganic chemistry to design molecules that mimic the quantum properties (e.g. the lifetime of spin superpositions, or the resonant frequencies thereof) of other quantum objects, "quantum mimicry." In this comment, we describe the philosophical design strategies and recent exciting results from application of these strategies.

3.
Inorg Chem Front ; 10(23): 7064-7072, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38021440

RESUMEN

Design strategies for molecular thermometers by magnetic resonance are essential for enabling new noninvasive means of temperature mapping for disease diagnoses and treatments. Herein we demonstrate a new design strategy for thermometry based on chemical control of the vibrational partition function. To do so, we performed variable-temperature 59Co NMR investigations of four air-stable Co(iii) complexes: Co(accp)3 (1), Co(bzac)3 (2), Co(tBu2-acac)3 (3), and Co(acac)3 (4) (accp = 2-acetylcyclopentanonate; bzac = benzoylacetonate; tBu2-acac = 2,2,6,6-tetramethyl-3,5-heptanedionate and acac = acetylacetonate). We discovered 59Co chemical shift temperature sensitivity (Δδ/ΔT) values of 3.50(2), 3.39(3), 1.63(3), and 2.83(1) ppm °C-1 for 1-4, respectively, at 100 mM concentration. The values observed for 1 and 2 are new records for sensitivity for low-spin Co(iii) complexes. We propose that the observed heightened sensitivities for 1 and 2 are intimately tied to the asymmetry of the accp and bzac ligands versus the acac and tBu2-acac ligands, which enables a larger number of low-energy Raman-active vibrational modes to contribute to the observed Δδ/ΔT values.

4.
Dalton Trans ; 52(31): 10805-10816, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37485670

RESUMEN

Methods of controlling spin coherence by molecular design are essential to efforts to develop molecular qubits for quantum information and sensing applications. In this manuscript, we perform the first studies of how arrangements of 35/37Cl nuclear spins in the ligand shell and counterion selection affect the coherent spin dynamics of V(IV) complexes at a high magnetic field. We prepared eight derivatives of the vanadium triscatecholate complex with varying arrangements of 35/37Cl substitution on the catechol backbone and R3NH+ counterions (R = Et, n-Bu, n-Hex) and investigated these species via structural and spectroscopic methods. Hahn-echo pulsed electron paramagnetic resonance (EPR) experiments at high-frequency (120 GHz) and field (ca. 4.4 T) were used to extract the phase-memory relaxation time (Tm) and spin-lattice relaxation (T1) times of the series of complexes. We found Tm values ranging from 4.8 to 1.1 µs in the temperature range of 5 to 40 K, varying by approximately 20% as a function of substitutional pattern. In-depth analysis of the results herein and comparison with related studies of brominated analogues disproves multiple hypothesized mechanisms for Tm control. Ultimately, we propose that more specific properties of the halogen atoms, e.g. the chemical shift, V⋯Cl hyperfine coupling, and quadrupolar coupling, could be contributing to the V(IV) Tm time.

5.
Chem Sci ; 14(15): 4083-4090, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37063793

RESUMEN

Redox-active tetraoxolene ligands such as 1,4-dihydroxybenzoquinone provide access to a diversity of metal-organic architectures, many of which display interesting magnetic behavior and high electrical conductivity. Here, we take a closer look at how structure dictates physical properties in a series of 1D iron-tetraoxolene chains. Using a diphenyl-derivatized tetraoxolene ligand (H2Ph2dhbq), we show that the steric profile of the coordinating solvent controls whether linear or helical chains are exclusively formed. Despite similar ligand environments, only the helical chain displays temperature-dependent valence tautomerism, switching from (FeII)(Ph2dhbq2-) to (FeIII)(Ph2dhbq3˙-) at temperatures below 203 K. The stabilization of ligand radicals leads to exceptionally strong magnetic exchange coupling (J = -230 ± 4 cm-1). Meanwhile, the linear chains are more amenable to oxidative doping, leading to Robin-Day class II/III mixed-valency and an increase in electrical conductivity by nearly three orders of magnitude. While previous studies have focused on the effects of changing metal and ligand identity, this work highlights how altering the metal-ligand connectivity can be a similarly powerful tool for tuning materials properties.

6.
J Am Chem Soc ; 144(20): 9132-9137, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35549174

RESUMEN

Designing spins that exhibit long-lived coherence and strong temperature sensitivity is central to designing effective molecular thermometers and a fundamental challenge in the chemistry/quantum-information space. Herein, we provide a new pathway to both properties in the same molecule by designing a nuclear spin, which possesses a robust spin coherence, to mimic the strong temperature sensitivity of an electronic spin. This design strategy is demonstrated in the group of trinuclear Co(III) spin-crossover compounds [(CpCo(OP(OR)2)3)2Co](SbCl6) where Cp = cyclopentadienyl and R = Me (1), Et (2), i-Pr (3), and t-Bu (4). Nuclear magnetic resonance analyses of the 59Co nuclear spins reveal 59Co chemical-shift temperature sensitivity (Δδ/ΔT) values that span from 101(1) ppm/°C in 1 to 149(1) ppm/°C in 2 and 150(2) ppm/°C in 4, where the latter two are record temperature sensitivities for any nuclear spin. Additionally, complexes 2 and 4 have T2* values of 74 and 78 µs in solution at ambient temperatures surpassing those from electron-spin-based complexes, which typically display long coherence times only at extremely low temperatures. Our results suggest that spin-crossover phenomena can enable electron-spin-like temperature sensitivities in nuclear spins while retaining robust coherence times at room temperature.

7.
Cell Rep Phys Sci ; 3(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35425929

RESUMEN

Strategies for slowing magnetic relaxation via local environmental design are vital for developing next-generation spin-based technologies (e.g., quantum information processing). Herein, we demonstrate a technique to do so via chemical design of a local magnetic environment. We show that embedding the open-shell complex (Ph4P)2[Co(SPh)4] in solid-state matrices of the isostructural, open-shell species (Ph4P)2[M(SPh)4] (M = Ni2+, S = 1; M = Fe2+, S = 2; M = Mn2+, S = 5 2 ) will slow magnetic relaxation for the embedded [Co(SPh)4]2- ion by three orders of magnitude. Magnetometry, electron paramagnetic resonance (EPR), and computational analyses reveal that integer spin and large, positive zero-field splitting (D) values for the diluent produce a quiet, local magnetic field that slows relaxation rates for the embedded Co molecules. These results will enable the investigation of magnetic systems for which strictly diamagnetic congeners are either synthetically inaccessible or are not isostructural.

8.
Angew Chem Int Ed Engl ; 61(22): e202202329, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35302701

RESUMEN

Dinitrogen coordination to iron centers underpins industrial and biological fixation in the Haber-Bosch process and by the FeM cofactors in the nitrogenase enzymes. The latter employ local high-spin metal centers; however, iron-dinitrogen coordination chemistry remains dominated by low-valent states, contrasting the enzyme systems. Here, we report a high-spin mixed-valent cis-(µ-1,2-dinitrogen)diiron(I/II) complex [(FeBr)2 (µ-N2 )Lbis ]- (2), where [Lbis ]- is a bis(ß-diketiminate) cyclophane. Field-applied Mössbauer spectra, dc and ac magnetic susceptibility measurements, and computational methods support a delocalized S=7 /2 Fe2 N2 unit with D=-5.23 cm-1 and consequent slow magnetic relaxation.


Asunto(s)
Hierro , Nitrogenasa
9.
Dalton Trans ; 51(8): 3341-3348, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35137732

RESUMEN

Complexes of encapsulated metal ions are promising potential metal-based electron paramagnetic resonance imaging (EPRI) agents due to zero-field splitting. Herein, we synthesize and magnetically characterize a series of five new Ni(II) complexes based on a clathrochelate ligand to provide a new design strategy for zero-field splitting in an encaged environment. UV-Vis and X-ray single-crystal diffraction experiments demonstrate slight physical and electronic structure changes as a function of the differing substituents. The consequence of these changes at the remote apical and sidearm positions of the encaging ligands is a zero-field splitting parameter (D) that varies over a large range of 11 cm-1. These results demonstrate a remarkable flexibility of the zero-field splitting and electronic structure in nickelous cages and give a clear toolkit for modifying zero-field splitting in highly stable ligand shells.

10.
Inorg Chem ; 61(2): 778-785, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34962806

RESUMEN

Understanding the mechanisms governing temperature-dependent magnetic resonance properties is essential for enabling thermometry via magnetic resonance imaging. Herein we harness a new molecular design strategy for thermometry─that of effective mass engineering via deuteration in the first coordination shell─to reveal the mechanistic origin of 59Co chemical shift thermometry. Exposure of [Co(en)3]3+ (1; en = ethylenediamine) and [Co(diNOsar)]3+ (2; diNOsar = dinitrosarcophagine) to mixtures of H2O and D2O produces distributions of [Co(en)3]3+-dn (n = 0-12) and [Co(diNOsar)]3+-dn (n = 0-6) isotopomers all resolvable by 59Co NMR. Variable-temperature 59Co NMR analyses reveal a temperature dependence of the 59Co chemical shift, Δδ/ΔT, on deuteration of the N-donor atoms. For 1, deuteration amplifies Δδ/ΔT by 0.07 ppm/°C. Increasing degrees of deuteration yield an opposing influence on 2, diminishing Δδ/ΔT by -0.07 ppm/°C. Solution-phase Raman spectroscopy in the low-frequency 200-600 cm-1 regime reveals a red shift of Raman-active Co-N6 vibrational modes by deuteration. Analysis of the normal vibrational modes shows that Raman modes produce the largest variation in 59Co δ. Finally, partition function analysis of the Raman-active modes shows that increased populations of Raman modes predict greater Δδ/ΔT, representing new experimental insight into the thermometry mechanism.

11.
Angew Chem Int Ed Engl ; 60(35): 19207-19213, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34129257

RESUMEN

tert-Butoxide unlocks new reactivity patterns embedded in nitroarenes. Exposure of nitrostilbenes to sodium tert-butoxide was found to produce N-hydroxyindoles at room temperature without an additive. Changing the counterion to potassium changed the reaction outcome to yield solely oxindoles through an unprecedented dioxygen-transfer reaction followed by a 1,2-phenyl migration. Mechanistic experiments established that these reactions proceed via radical intermediates and suggest that counterion coordination controls whether an oxindole or N-hydroxyindole product is formed.


Asunto(s)
Butanoles/química , Indoles/química , Nitrocompuestos/química , Oxindoles/química , Estilbenos/química , Transporte de Electrón , Estructura Molecular
12.
Chem Soc Rev ; 50(12): 6684-6699, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33949521

RESUMEN

Understanding and utilizing the dynamic quantum properties of metal ions is the frontier of many next generation technologies. One property in particular, magnetic relaxation, is a complicated physical phenomenon that is scarcely treated in undergraduate coursework. Consequently, principles of magnetic relaxation are nearly impenetrable to starting synthetic chemists, who ultimately design the molecules that fuel new discoveries. In this Tutorial Review, we describe a new paradigm for thinking of magnetic relaxation in metal complexes in terms of a simple reaction-coordinate diagram to facilitate access to the field. We cover the main mechanisms of both spin-lattice (T1) and spin-spin (T2) relaxation times within this conceptual framework and how molecular and environmental design affects these times. Ultimately, we show that many of the scientific methods used by inorganic chemists to study and manipulate reactivity are also useful for understanding and controlling magnetic relaxation. We also describe the cutting edge of magnetic relaxation within this paradigm.

13.
Dalton Trans ; 50(15): 5342-5350, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33881070

RESUMEN

Understanding how the ligand shell controls low-frequency electron paramagnetic resonance (EPR) spectroscopic properties of metal ions is essential if they are to be used in EPR-based bioimaging schemes. In this work, we probe how specific variations in the ligand structure impact L-band (ca. 1.3 GHz) EPR spectroscopic linewidths in the trichloride salts of five Cr(iii) complexes: [Cr(RR-dphen)3]3+ (RR-dphen = (1R,2R)-(+)-diphenylethylenediamine, 1), [Cr(en)3]3+ (en = ethylenediamine, 2), [Cr(me-en)3]3+ (me-en = 1,2-diaminopropane, 3), [Cr(tn)3]3+ (tn = 1,3-diaminopropane, 4) [Cr(trans-chxn)3]3+ (trans-chxn = trans-(±)-1,2-diaminocyclohexane, 5). Spectral broadening varies in a nonintuitive manner across the series, showing the sharpest peaks for 1 and broadest for 5. Molecular dynamics simulations provide evidence that the broadening is correlated to rigidity in the inner coordination sphere and reflected in ligand-dependent distribution of Cr-N bond distances that can be found in frozen solution.

14.
Dalton Trans ; 49(45): 16380-16385, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32478347

RESUMEN

Cobalt-59 nuclei are known for extremely thermally sensitive chemical shifts (δ), which in the long term could yield novel magnetic resonance thermometers for bioimaging applications. In this manuscript, we apply extended X-ray absorption fine structure (EXAFS) spectroscopy for the first time to probe the exact variations in physical structure that produce the exceptional thermal sensitivity of the 59Co NMR chemical shift. We apply this spectroscopic technique to five Co(iii) complexes: [Co(NH3)6]Cl3 (1), [Co(en)3]Cl3 (2) (en = ethylenediamine), [Co(tn)3]Cl3 (3) (tn = trimethylenediamine), [Co(tame)2]Cl3 (4) (tame = 1,1,1-tris(aminomethyl)ethane), and [Co(diNOsar)]Cl3 (5) (diNOsar = dinitrosarcophagine). The solution-phase EXAFS data reveal increasing Co-N bond distances for these aqueous complexes over a ∼50 °C temperature window, expanding by Δr(Co-N) = 0.0256(6) Å, 0.0020(5) Å, 0.0084(5) Å, 0.0006(5) Å, and 0.0075(6) Å for 1-5, respectively. Computational analyses of the structural changes reveal that increased connectivity between the donor atoms encourages complex structural variations. These results imply that rich temperature-dependent structural variations define 59Co NMR thermometry in macrocyclic complexes.

15.
Inorg Chem ; 59(11): 7479-7486, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32302112

RESUMEN

Interstitial patterning of nuclear spins is a nascent design principle for controlling electron spin superposition lifetimes in open-shell complexes and solid-state defects. Herein we report the first test of the impact of the patterning principle on ligand-based nuclear spin dynamics. We test how substitutional patterning of 1H and 79/81Br nuclear spins on ligands modulates proton nuclear spin dynamics in the ligand shell of metal complexes. To do so, we studied the 1H nuclear magnetic resonance relaxation times (T1 and T2) of a series of eight polybrominated catechol ligands and six complexes formed by coordination of the ligands to a Ti(IV) ion. These studies reveal that 1H T1 values can be enhanced in the individual ligands by a factor of 4 (from 10.8(3) to 43(5) s) as a function of substitution pattern, reaching the maximum value for 3,4,6-tribromocatechol. The T2 for 1H is also enhanced by a factor of 4, varying by ∼14 s across the series. When complexed, the impact of the patterning design strategy on nuclear spin dynamics is amplified and 1H T1 and T2 values vary by over an order of magnitude. Importantly, the general trends observed in the ligands also match those when complexed. Hence, these results demonstrate a new design principle to control 1H spin dynamics in metal complexes through pattern-based design strategies in the ligand shell.

16.
Polyhedron ; 1752020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34092885

RESUMEN

Low-coordinate ions possess exciting magnetic, optical, and reactive properties that may afford novel material physics. Hence, it is important to test both synthetic methods for realizing extended solids of such ions as well as the properties of smaller molecular fragments of envisioned future materials. Herein, we report the synthesis and characterization of a new dinuclear Fe species, [{(Me3Si2)2N}Fe{µ-p-{HN(SiMe3)}(C6Me4){N(SiMe3)}}2Fe{N(SiMe3)2}] (1), formed through a transamination reaction between [Fe{N(SiMe3)2}2]2 and the bulky diamine p-{HN(SiMe3)}2(C6Me4) (L). The Fe centers of this dimer assume a pseudo-trigonal-planar, three-coordinate conformation in 1, bridged by two aromatic diamines. Single-crystal X-ray diffraction, IR spectroscopy, and Mössbauer spectroscopy enable the assignment of both Fe centers as the 2+ oxidation state. Magnetic studies show that 1 displays a weak antiferromagnetic exchange interaction (J = -2.33 cm-1) and moderate zero-field splitting (D = 7.51 cm-1). Importantly, these studies demonstrate the viability of using transamination to bridge high-spin low-coordinate metal ions and hence the technique may, in the future, produce new extended structures.

17.
Magnetochemistry ; 6(4)2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34095291

RESUMEN

Studying the correlation between temperature-driven molecular structure and nuclear spin dynamics is essential to understanding fundamental design principles for thermometric nuclear magnetic resonance spin-based probes. Herein, we study the impact of progressively encapsulating ligands on temperature-dependent 59Co T 1 (spin-lattice) and T 2 (spin-spin) relaxation times in a set of Co(III) complexes: K3[Co(CN)6] (1); [Co(NH3)6]Cl3 (2); [Co(en)3]Cl3 (3), en = ethylenediamine); [Co(tn)3]Cl3 (4), tn = trimethylenediamine); [Co(tame)2]Cl3 (5), tame = triaminomethylethane); and [Co(dinosar)]Cl3 (6), dinosar = dinitrosarcophagine). Measurements indicate that 59Co T 1 and T 2 increase with temperature for 1-6 between 10 and 60 °C, with the greatest ΔT 1/ΔT and ΔT 2/ΔT temperature sensitivities found for 4 and 3, 5.3(3)%T 1/°C and 6(1)%T 2/°C, respectively. Temperature-dependent T 2* (dephasing time) analyses were also made, revealing the highest ΔT 2*/ΔT sensitivities in structures of greatest encapsulation, as high as 4.64%T 2*/°C for 6. Calculations of the temperature-dependent quadrupolar coupling parameter, Δe 2 qQ/ΔT, enable insight into the origins of the relative ΔT 1/ΔT values. These results suggest tunable quadrupolar coupling interactions as novel design principles for enhancing temperature sensitivity in nuclear spin-based probes.

18.
Chem Sci ; 10(36): 8447-8454, 2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31803424

RESUMEN

Achieving control of phase memory relaxation times (T m) in metal ions is an important goal of molecular spintronics. Herein we provide the first evidence that nuclear-spin patterning in the ligand shell is an important handle to modulate T m in metal ions. We synthesized and studied a series of five V(iv) complexes with brominated catecholate ligands, [V(C6H4-n Br n O2)3]2- (n = 0, 1, 2, and 4), where the 79/81Br and 1H nuclear spins are arranged in different substitutional patterns. High-field, high-frequency (120 GHz) pulsed electron paramagnetic resonance spectroscopic analysis of this series reveals a pattern-dependent variation in T m for the V(iv) ion. Notably, we show that it is possible for two molecules to have starkly different (by 50%) T m values despite the same chemical composition. Nuclear magnetic resonance analyses of the protons on the ligand shell suggest that relative chemical shift (δ), controlled by the patterning of nuclear spins, is an important underlying design principle. Here, having multiple ligand-based protons with nearly identical chemical shift values in the ligand shell will, ultimately, engender a short T m for the bound metal ion.

19.
Chem Sci ; 10(27): 6707-6714, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31367325

RESUMEN

Harnessing synthetic chemistry to design electronic spin-based qubits, the smallest unit of a quantum information system, enables us to probe fundamental questions regarding spin relaxation dynamics. We sought to probe the influence of metal-ligand covalency on spin-lattice relaxation, which comprises the upper limit of coherence time. Specifically, we studied the impact of the first coordination sphere on spin-lattice relaxation through a series of four molecules featuring V-S, V-Se, Cu-S, and Cu-Se bonds, the Ph4P+ salts of the complexes [V(C6H4S2)3]2- (1), [Cu(C6H4S2)2]2- (2), [V(C6H4Se2)3]2- (3), and [Cu(C6H4Se2)2]2- (4). The combined results of pulse electron paramagnetic resonance spectroscopy and ac magnetic susceptibility studies demonstrate the influence of greater M-L covalency, and consequently spin-delocalization onto the ligand, on elongating spin-lattice relaxation times. Notably, we observe the longest spin-lattice relaxation times in 2, and spin echos that survive until room temperature in both copper complexes (2 and 4).

20.
Chem Sci ; 10(27): 6727-6734, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31367328

RESUMEN

Thermometry via magnetic resonance imaging (MRI) would provide a powerful noninvasive window into physiological temperature management. Cobalt-59 nuclear spins demonstrate exceptional temperature dependence of their NMR chemical shifts, yet the insight to control this dependence via molecular design is lacking. We present the first systematic evidence that encapsulation of this spin system amplifies the temperature sensitivity. We tested the temperature dependence of the 59Co chemical shift (Δδ/ΔT) in a series of five low-spin cobalt(iii) complexes as a function of increasing encapsulation within the 1st coordination sphere. This study spans from [Co(NH3)6]Cl3, with no interligand connectivity, to a fully encapsulated dinitrosarcophagine (diNOsar) complex, [Co(diNOsar)]Cl3. We discovered Δδ/ΔT values that span from 1.44(2) ppm °C-1 in [Co(NH3)6]Cl3 to 2.04(2) ppm °C-1 in [Co(diNOsar)]Cl3, the latter among the highest for a molecular complex. The data herein suggest that designing 59Co NMR thermometers toward high chemical stability can be coincident with high Δδ/ΔT. To better understand this phenomenon, variable-temperature UV-Vis, 59Co NMR relaxation, Raman spectroscopic, and variable-solvent investigations were performed. Data from these measurements highlight an unexpected impact of encapsulation - an increasingly dynamic and flexible inner coordination sphere. These results comprise the first systematic studies to reveal insight into the molecular factors that govern Δδ/ΔT and provide the first evidence of 59Co nuclear-spin control via vibrational means.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...