Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Sensors (Basel) ; 24(5)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38474959

In this paper, a novel Multi-Objective Hypergraph Particle Swarm Optimization (MOHGPSO) algorithm for structural health monitoring (SHM) systems is considered. This algorithm autonomously identifies the most relevant sensor placements in a combined fitness function without artificial intervention. The approach utilizes six established Optimal Sensor Placement (OSP) methods to generate a Pareto front, which is systematically analyzed and archived through Grey Relational Analysis (GRA) and Fuzzy Decision Making (FDM). This comprehensive analysis demonstrates the proposed approach's superior performance in determining sensor placements, showcasing its adaptability to structural changes, enhancement of durability, and effective management of the life cycle of structures. Overall, this paper makes a significant contribution to engineering by leveraging advancements in sensor and information technologies to ensure essential infrastructure safety through SHM systems.

2.
PLoS One ; 18(9): e0286362, 2023.
Article En | MEDLINE | ID: mdl-37733720

Stock market forecasting is one of the most challenging problems in today's financial markets. According to the efficient market hypothesis, it is almost impossible to predict the stock market with 100% accuracy. However, Machine Learning (ML) methods can improve stock market predictions to some extent. In this paper, a novel strategy is proposed to improve the prediction efficiency of ML models for financial markets. Nine ML models are used to predict the direction of the stock market. First, these models are trained and validated using the traditional methodology on a historic data captured over a 1-day time frame. Then, the models are trained using the proposed methodology. Following the traditional methodology, Logistic Regression achieved the highest accuracy of 85.51% followed by XG Boost and Random Forest. With the proposed strategy, the Random Forest model achieved the highest accuracy of 91.27% followed by XG Boost, ADA Boost and ANN. In the later part of the paper, it is shown that only classification report is not sufficient to validate the performance of ML model for stock market prediction. A simulation model of the financial market is used in order to evaluate the risk, maximum draw down and returns associate with each ML model. The overall results demonstrated that the proposed strategy not only improves the stock market returns but also reduces the risks associated with each ML model.


Investments , Machine Learning , Humans , Computer Simulation , Random Forest , Research Personnel
3.
Sensors (Basel) ; 22(24)2022 Dec 12.
Article En | MEDLINE | ID: mdl-36560120

Unreliable networks often use excess bandwidth for data integration in smart cities. For this purpose, Messaging Queuing Telemetry Transport (MQTT) with a certain quality of service (QoS) is employed. Data integrity and data security are frequently compromised for reducing bandwidth usage while designing integrated applications. Thus, for a reliable and secure integrated Internet of Everything (IoE) service, a range of network parameters are conditioned to achieve the required quality of a deliverable service. In this work, a QoS-0-based MQTT is developed in such a manner that the transparent MQTT protocol uses Transmission Control Protocol (TCP)-based connectivity with various rules for the retransmission of contents if the requests are not entertained for a fixed duration. The work explores the ways to improve the overall content delivery probability. The parameters are examined over a transparent gateway-based TCP network after developing a mathematical model for the proposed retransmission-based mutant QoS-0. The probability model is then verified by an actual physical network where the repeated content delivery is explored at VM-based MQTT, local network-based broker and a remote server. The results show that the repeated transmission of contents from the sender improves the content delivery probability over the unreliable MQTT-based Internet of Things (IoT) for developing smart cities' applications.


Internet of Things , Internet , Cities , Telemetry , Models, Theoretical
4.
Entropy (Basel) ; 20(2)2018 Jan 30.
Article En | MEDLINE | ID: mdl-33265183

Uplink and Downlink channel estimation in massive Multiple Input Multiple Output (MIMO) systems is an intricate issue because of the increasing channel matrix dimensions. The channel feedback overhead using traditional codebook schemes is very large, which consumes more bandwidth and decreases the overall system efficiency. The purpose of this paper is to decrease the channel estimation overhead by taking the advantage of sparse attributes and also to optimize the Energy Efficiency (EE) of the system. To cope with this issue, we propose a novel approach by using Compressed-Sensing (CS), Block Iterative-Support-Detection (Block-ISD), Angle-of-Departure (AoD) and Structured Compressive Sampling Matching Pursuit (S-CoSaMP) algorithms to reduce the channel estimation overhead and compare them with the traditional algorithms. The CS uses temporal-correlation of time-varying channels to produce Differential-Channel Impulse Response (DCIR) among two CIRs that are adjacent in time-slots. DCIR has greater sparsity than the conventional CIRs as it can be easily compressed. The Block-ISD uses spatial-correlation of the channels to obtain the block-sparsity which results in lower pilot-overhead. AoD quantizes the channels whose path-AoDs variation is slower than path-gains and such information is utilized for reducing the overhead. S-CoSaMP deploys structured-sparsity to obtain reliable Channel-State-Information (CSI). MATLAB simulation results show that the proposed CS based algorithms reduce the feedback and pilot-overhead by a significant percentage and also improve the system capacity as compared with the traditional algorithms. Moreover, the EE level increases with increasing Base Station (BS) density, UE density and lowering hardware impairments level.

...