Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 20402, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990113

RESUMEN

Polystyrene (PS) is a commonly used plastic material in disposable containers. However, it readily breaks down into microplastic particles when exposed to water environments. In this research, oak powder was used as a natural, inexpensive, and eco-friendly coagulant. The present study aims to determine the effectiveness of oak powder in removing PS from aquatic environments. The Box-Behnken model (BBD) was used to determine the optimal conditions for removal. The removal efficiency was evaluated for various parameters including PS concentration (100-900 mg/L), pH (4-10), contact time (10-40 min), and oak dosage (100-400 mg/L). The maximum removal of PS microplastics (89.1%) was achieved by using an oak dose of 250 mg/L, a PS concentration of 900 mg/L, a contact time of 40 min, and a pH of 7. These results suggest that oak powder can effectively remove PS microplastics through surface adsorption and charge neutralization mechanisms, likely due to the presence of tannin compounds. Based on the results obtained, it has been found that the natural coagulant derived from oak has the potential to effectively compete with harmful chemical coagulants in removing microplastics from aqueous solutions.

2.
Sci Rep ; 13(1): 17989, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864009

RESUMEN

Microplastics (MPs), as carriers of organic pollutants in the environment, have become a growing public concern in recent years. Tetracycline (TTC) is an antibiotic that can be absorbed by MPs and have a harmful effect on human health. Therefore, this study was conducted with the aim of investigating the adsorption rate of TTC onto polyvinyl chloride (PVC) MPs. In addition, the adsorption mechanism of this process was studied using isothermal, kinetic, and thermodynamic models. For this purpose, experimental runs using the Box-Behnken model were designed to investigate the main research parameters, including PVC dose (0.5-2 g/L), reaction time (5-55 min), initial antibiotic concentration (5-15 mg/L), and pH (4-10). Based on the research findings, the highest TTC adsorption rate (93.23%) was obtained at a pH of 10, a contact time of 55 min, an adsorbent dose of 1.25 g/L, and an antibiotic concentration of 10 mg/L. The study found that the adsorption rate of TTC followed the pseudo-second-order and Langmuir models. Thermodynamic data indicated that the process was spontaneous, exothermic, and physical. Increasing ion concentration decreased TTC adsorption, and distilled water had the highest adsorption, while municipal wastewater had the lowest adsorption. These findings provide valuable insights into the behavior of MPs and organic pollutants, underscoring the importance of conducting additional research and implementing measures to mitigate their detrimental effects on human health and the environment.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos , Cloruro de Polivinilo , Adsorción , Antibacterianos , Tetraciclina , Agua , Contaminantes Químicos del Agua/análisis , Cinética
3.
Heliyon ; 9(9): e19460, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810043

RESUMEN

Crystal violet (CV) is an azo dye with cationic nature, belonging to the triphenylmethane group. This study was designed to optimize CV removal by S. cerevisiae from aqueous solutions using BBD model. Harvested cells of S. cerevisiae were locally obtained from Iran Science and Technology Research Organization (ISTRO). The decolorization tests were performed in a laboratory container containing a 100 cc of reaction solution under different variables, including yeast dose (0.5-1.5 g/L), pH (4-10), dye concentration (10-100 mg/L), and the reaction time of 24 h. After stirring with a magnetic shaker at a speed of 400 rpm, 10 cc of each sample was taken and centrifuged at 4000 rpm for 10 min to separate the biomass from dye solution. Then, the supernatant was filtered and finally the remaining CV was measured by a spectrophotometer at λmax 590 nm. After the optimization of the factors mentioned above, the removal efficiency of this dye was investigated at the reaction times of 0.5-72 h. The findings indicated that CV removal ranged from 53.92 to 84.99%. The maximum CV removal was obtained at the CV concentration of 100 mg/L, the pH of 7, and the S. cerevisiae dose of 1.5 g/L. The findings showed that the elimination efficiency is directly related to the initial CV concentration, pH, and S. cerevisiae dose. However, during the reaction time, the elimination efficiency decreased slightly. The findings of this study proved that CV can be removed from aqueous solutions with an easy and low-cost method based on the use of indigenous microorganisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...