Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39305410

RESUMEN

Moss spores are present in aerobiological samples, but their low representation, lack of known allergenic properties, and difficult identification have led to their being overlooked by aerobiologists so far. The data about their presence in the atmosphere and the factors that influence them are, however, important from the biodiversity conservation point of view, since they give us information about their ability to spread to new habitats. In this pilot study, we analysed their presence in the atmosphere of Bratislava city, Slovakia (2018-2023), using Burkard volumetric sampler, and determined the most significant factors influencing its temporal distribution. The size category of 13-18 µm was the most represented in the samples. Environmental factors influenced the daily spore concentrations and the characteristics of the whole spore season. The start of the Main Spore Season (MSS) depended mainly on the temperatures in November-January, initiating earlier growth of sporophytes in the following year, while the intensity of the MSS was influenced by high humidity in April, stimulating the formation of spores in sporangia. The daily concentration of airborne moss spores was mostly influenced by the actual temperature and wind speed, promoting the release and dispersal of spores, and precipitation lowering their levels due to the "wash-out" effect, although no intradiurnal pattern was observed. More data from other locations is needed to determine the role of atmospheric spore transport for the conservation of moss species facing anthropogenic climatic change.

2.
RSC Adv ; 14(38): 28138-28147, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39228762

RESUMEN

With the aim of tuning the magnetic anisotropy, a series of Co(ii) complexes with the general formula of complex cations [Co(L)X]+, where X = Br- (1); I- (2); NCO- (3); NCS- (4a); N3 - (5), and [Co(L)(NCS)2] (4b), (L = a 17-membered pyridine-based N3O2-macrocyclic ligand containing two pyridin-2-ylmethyl pendant arms) were prepared and thoroughly characterized. The molecular structures for all complexes showed strongly distorted geometry in between octahedral and trigonal prismatic. The magnetic studies confirmed substantial magnetic anisotropy with positive values of D, the axial zero-field splitting parameter, but E/D ratios close to 1/3. This was supported by theoretical CASSCF calculations showing no significant effect of the co-ligands. Complex 4b was found to behave as a field-induced SMM.

3.
Environ Sci Pollut Res Int ; 31(30): 43238-43248, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898346

RESUMEN

The ongoing climatic change, together with atmospheric pollution, influences the timing, duration and intensity of pollen seasons of some allergenic plant taxa. To study these influences, we correlated the trends in the pollen season characteristics of both woody (Fraxinus, Quercus) and herbaceous (Ambrosia) taxa from two pollen monitoring stations in Slovakia with the trends in meteorological factors and air pollutants during the last two decades. In woody species, the increased temperature during the formation of flower buds in summer and autumn led to an earlier onset and intensification of next year's pollen season, especially in Quercus. The increase of relative air humidity and precipitation during this time also had a positive influence on the intensity of the pollen season of trees. The pollen season of the invasive herbaceous species Ambrosia artemisiifolia was prolonged by increased temperature and humidity during the summer and autumn of the same year, which extended the blooming period and delayed the end of the pollen season. From the studied air pollutants, only three were found to correlate with the intensity of the pollen season of the studied taxa, CO - positively and SO2 and NO2 - negatively. It is important to study these long-term trends since they not only give us valuable insight into the response of plants to changing conditions but also enable the prognosis of the exacerbations of pollen-related allergenic diseases.


Asunto(s)
Contaminantes Atmosféricos , Ambrosia , Cambio Climático , Monitoreo del Ambiente , Fraxinus , Polen , Quercus , Estaciones del Año , Contaminantes Atmosféricos/análisis , Eslovaquia , Alérgenos , Contaminación del Aire
4.
Environ Sci Pollut Res Int ; 31(2): 2026-2041, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052730

RESUMEN

Park greenery represents an oasis for urban residents; however, during the flowering period of trees that produce allergenic pollen grains, these areas threaten individuals suffering from seasonal allergic respiratory diseases. In this study, we evaluated the temporal distribution of the allergenic potential of three most important urban parks in Bratislava over the vegetation period, using a modification of the Urban Green Zone Allergenicity Index (IUGZA) and Individual-Specific Allergenic Potential Index (IISA) designed as a running index - rIUGZA and rIISA. We found that rIUGZA gives better information for park management and revitalization, since it considers the potential size of woody plants, while rIISA, considering the actual size of the vegetation, provides more relevant information for pollen-allergy sufferers. Based on rIISA, the allergenic potential was highest in May for the Grassalkovich Garden (formal baroque garden) and Janko Král Park (English landscape park) and in April for the Medic Garden (repurposed baroque garden). We also found differences in the duration of the period of increased allergenic potential in these parks, ranging from 1 to 3 months. Based on the total annual sums of rIISA, we found the highest allergenic potential in the Medic Garden and lowest in the Janko Král Park. This variance is caused mainly by the different density of trees and percentage of allergenic species. The biggest contributors to the allergenic potential were Platanus, Acer and Tilia. Based on the information on temporal variation of the allergenic potential during the vegetation period provided by the running indices, it is possible to improve the planning of park revitalization based on the flowering period of allergenic species and provide better information to the pollen-allergy sufferers for minimizing the allergenic effect of urban green areas on their health during a particular month.


Asunto(s)
Alérgenos , Hipersensibilidad , Humanos , Parques Recreativos , Eslovaquia , Polen , Árboles , Ciudades
5.
Dalton Trans ; 52(48): 18513-18524, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38015562

RESUMEN

Large uniaxial magnetic anisotropy, expressed by a negative value of the axial zero-field splitting parameter D, has been achieved in a series of trigonal prismatic Co(II) complexes with the general formula [Co(L)X]Y, where L = 1,5,13,17,22-pentaazatricyclo[15.2.2.17,11]docosa-7,9,11(22)-triene, X = Cl-(1a,b), Br-(2), N3-(3), NCO-(4), NCS-(5), NCSe-(6), and Y = Cl-(1), Br-(2), NCS-(4), NCSe-(5), ClO4-(3,6). Complexes 1-6 are six-coordinate with the distorted trigonal prismatic geometry imparted by the pentadentate pyridine-/piperazine-based macrocyclic ligand L and by one monovalent coligand X-. Based on magnetic studies, all complexes 1-6 exhibit strong magnetic anisotropy with negative D-values ranging from about -20 to -41 cm-1. This variation in D (i.e. the increase of magnetic anisotropy) parallels the trend obtained by theoretical calculations and the lesser distortion of the coordination sphere with respect to the trigonal prismatic reference geometry. AC magnetic susceptibility investigations revealed field-induced single-molecule magnet behaviour for all complexes except Cl- derivative 1. The series investigated represents a rare example of Co(II) complexes with a robust trigonal prismatic geometry.

6.
Environ Sci Pollut Res Int ; 30(43): 97616-97628, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37594706

RESUMEN

Despite their non-negligible representation among the airborne bioparticles and known allergenicity, autotrophic microorganisms-microalgae and cyanobacteria-are not commonly reported or studied by aerobiological monitoring stations due to the challenging identification in their desiccated and fragmented state. Using a gravimetric method with open plates at the same time as Hirst-type volumetric bioparticle sampler, we were able to cultivate the autotrophic microorganisms and use it as a reference for correct retrospective identification of the microalgae and cyanobacteria captured by the volumetric trap. Only in this way, reliable data on their presence in the air of a given area can be obtained and analysed with regard to their temporal variation and environmental factors. We gained these data for an inland temperate region over 3 years (2018, 2020-2021), identifying the microalgal genera Bracteacoccus, Desmococcus, Geminella, Chlorella, Klebsormidium, and Stichococcus (Chlorophyta) and cyanobacterium Nostoc in the volumetric trap samples and three more in the cultivated samples. The mean annual concentration recorded over 3 years was 19,182 cells*day/m3, with the greatest contribution from the genus Bracteacoccus (57%). Unlike some other bioparticles like pollen grains, autotrophic microorganisms were present in the samples over the course of the whole year, with greatest abundance in February and April. The peak daily concentration reached the highest value (1011 cells/m3) in 2021, while the mean daily concentration during the three analysed years was 56 cells/m3. The analysis of intra-diurnal patterns showed their increased presence in daylight hours, with a peak between 2 and 4 p.m. for most genera, which is especially important due to their potential to trigger allergy symptoms. From the environmental factors, wind speed had a most significant positive association with their concentration, while relative air humidity had a negative influence.


Asunto(s)
Chlorella , Chlorophyceae , Microalgas , Nostoc , Estudios Retrospectivos
7.
Environ Sci Pollut Res Int ; 30(42): 95438-95448, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544949

RESUMEN

The intensity of birch pollen season is expressed by seasonal pollen integral (SPIn, the sum of the mean daily pollen concentration during the birch pollination period) and the amount of Bet v 1 allergen released per birch pollen grain expressed by pollen allergen potency (PAP). Betula pollen and Bet v 1 allergen were simultaneously measured in the air of Bratislava from 2019 to 2022 by using two Burkard traps (Hirst-type and cyclone) in order to evaluate the causes of the seasonal variation in the SPIn and PAP levels. The highest SPIn (19,975 pollen/m3) was observed in 2022 and the lowest one (1484 pollen/m3) in 2021. The average daily PAP level (4.0 pg Bet v 1/pollen) was highest in 2019 and lowest (2.5 pg Bet v 1/pollen) in 2020. We found that seasonal variation in SPIn was associated mainly with the changes in environmental conditions during the pre-season period, whereas the year-to-year variation in PAP levels was attributed to environmental conditions during both pre- and in-season periods. Our results indicate that rainy weather in June 2020 and cold overcast weather in January‒February 2021 resulted in low SPIn in 2021. On the other hand, dry weather in June 2021 and warm weather in January‒February 2022 resulted in high SPIn in 2022. The low average daily PAP level in 2020 was associated with (1) low levels of gaseous air pollutants in March, when the ripening of pollen takes place; (2) an earlier start of the birch main pollen season (MPS); and (3) dry weather during the MPS. On the other hand, high PAP level in 2019 was associated with higher levels of air pollutants in March and during the MPS.


Asunto(s)
Contaminantes Atmosféricos , Alérgenos , Alérgenos/análisis , Betula , Polen/química , Tiempo (Meteorología)
8.
Molecules ; 28(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37375164

RESUMEN

Ruthenium complexes currently represent a perspective subject of investigation in terms of potential anticancer therapeutics. Eight novel octahedral ruthenium(II) complexes are the subject of this article. Complexes contain 2,2'-bipyridine molecules and salicylates as ligands, differing in position and type of halogen substituent. The structure of the complexes was determined via X-ray structural analysis and NMR spectroscopy. All complexes were characterized by spectral methods-FTIR, UV-Vis, ESI-MS. Complexes show sufficient stability in solutions. Therefore, their biological properties were studied. Binding ability to BSA, interaction with DNA, as well as in vitro antiproliferative effects against MCF-7 and U-118MG cell lines were investigated. Several complexes showed anticancer effects against these cell lines.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Compuestos Heterocíclicos , Rutenio , Rutenio/farmacología , Rutenio/química , Halógenos , Unión Proteica , Complejos de Coordinación/química , Antineoplásicos/química , Línea Celular Tumoral
9.
Dalton Trans ; 49(26): 9057-9069, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32568334

RESUMEN

A 17-membered piperazine-based macrocyclic ligand LdiProp (1,5,13,17,22-pentaazatricyclo[15.2.2.17,11]docosa-7,9,11(22)-triene) was resynthesized in high yield by using a linear pump. Its Mn(ii), Fe(ii), Co(ii) and Ni(ii) complexes of the general formula [MnLdiProp(ClO4)2] (1), [FeLdiProp(CH3CN)](ClO4)2 (2), [CoLdiProp(CH3CN)](ClO4)2 (3), [NiLdiProp](ClO4)2 (4) were prepared and thoroughly characterized. X-ray diffraction analysis confirmed that Mn(ii) complex 1 has capped trigonal prismatic geometry with a coordination number of seven, Fe(ii) and Co(ii) complexes 2 and 3 are trigonal prismatic with a coordination number of six and Ni(ii) complex 4 has square pyramidal geometry with a coordination number of five. The decrease of the coordination number is accompanied by a shortening of M-N distances and an increase of torsion of the piperazine ring from the equatorial plane. Magnetic measurement reveals moderate anisotropy for 4 and rather large magnetic anisotropy for 2 and 3 (axial zero-field splitting parameter D(Ni) = 9.0 cm-1, D(Fe) = -14.4 cm-1, D(Co) = -25.8 cm-1, together with rather high rhombicity). Co(ii) complex 3 behaves as a field-induced SMM with a combination of Raman and direct or Orbach and direct relaxation mechanisms. Obtained magnetic data were extensively supported by theoretical CASSCF calculations. The flexibility and rather large 17-membered macrocyclic cavity of ligand LdiProp could be responsible for the variation of coordination numbers and geometries for the investigated late-first row transition metals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA