Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4261, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871223

RESUMEN

Immune checkpoint inhibitors (ICIs) targeting PD-L1 and PD-1 have improved survival in a subset of patients with advanced non-small cell lung cancer (NSCLC). However, only a minority of NSCLC patients respond to ICIs, highlighting the need for superior immunotherapy. Herein, we report on a nanoparticle-based immunotherapy termed ARAC (Antigen Release Agent and Checkpoint Inhibitor) designed to enhance the efficacy of PD-L1 inhibitor. ARAC is a nanoparticle co-delivering PLK1 inhibitor (volasertib) and PD-L1 antibody. PLK1 is a key mitotic kinase that is overexpressed in various cancers including NSCLC and drives cancer growth. Inhibition of PLK1 selectively kills cancer cells and upregulates PD-L1 expression in surviving cancer cells thereby providing opportunity for ARAC targeted delivery in a feedforward manner. ARAC reduces effective doses of volasertib and PD-L1 antibody by 5-fold in a metastatic lung tumor model (LLC-JSP) and the effect is mainly mediated by CD8+ T cells. ARAC also shows efficacy in another lung tumor model (KLN-205), which does not respond to CTLA-4 and PD-1 inhibitor combination. This study highlights a rational combination strategy to augment existing therapies by utilizing our nanoparticle platform that can load multiple cargo types at once.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas , Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Receptor de Muerte Celular Programada 1
2.
Small ; 18(11): e2107550, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35083840

RESUMEN

The first-line treatment of advanced and metastatic human epidermal growth factor receptor type 2 (HER2+) breast cancer requires two HER2-targeting antibodies (trastuzumab and pertuzumab) and a taxane (docetaxel or paclitaxel). The three-drug regimen costs over $320,000 per treatment course, requires a 4 h infusion time, and has many adverse side effects, while achieving only 18 months of progression-free survival. To replace this regimen, reduce infusion time, and enhance efficacy, a single therapeutic is developed based on trastuzumab-conjugated nanoparticles for co-delivering docetaxel and siRNA against HER2 (siHER2). The optimal nanoconstruct has a hydrodynamic size of 100 nm and specifically treats HER2+ breast cancer cells over organ-derived normal cells. In a drug-resistant orthotopic HER2+ HCC1954 tumor mouse model, the nanoconstruct inhibits tumor growth more effectively than the docetaxel and trastuzumab combination. When coupled with microbubble-assisted focused ultrasound that transiently disrupts the blood brain barrier, the nanoconstruct inhibits the growth of trastuzumab-resistant HER2+ BT474 tumors residing in the brains of mice. The nanoconstruct has a favorable safety profile in cells and in mice. Combination therapies have become the cornerstone of cancer treatment and this versatile nanoparticle platform can co-deliver multiple therapeutic types to ensure that they reach the target cells at the same time to realize their synergy.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Nanopartículas , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Humanos , Ratones , ARN Interferente Pequeño , Receptor ErbB-2/genética , Taxoides/farmacología , Taxoides/uso terapéutico , Trastuzumab/efectos adversos , Trastuzumab/uso terapéutico
3.
Adv Mater ; 33(31): e2100628, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34118167

RESUMEN

The success of immunotherapy with immune checkpoint inhibitors (ICIs) in a subset of individuals has been very exciting. However, in many cancers, responses to current ICIs are modest and are seen only in a small subsets of patients. Herein, a widely applicable approach that increases the benefit of ICIs is reported. Intratumoral administration of augmenting immune response and inhibiting suppressive environment of tumors-AIRISE-02 nanotherapeutic that co-delivers CpG and STAT3 siRNA-results in not only regression of the injected tumor, but also tumors at distant sites in multiple tumor model systems. In particular, three doses of AIRISE-02 in combination with systemic ICIs completely cure both treated and untreated aggressive melanoma tumors in 63% of mice, while ICIs alone do not cure any mice. A long-term memory immune effect is also reported. AIRISE-02 is effective in breast and colon tumor models as well. Lastly, AIRISE-02 is well tolerated in mice and nonhuman primates. This approach combines multiple therapeutic agents into a single nanoconstruct to create whole-body immune responses across multiple cancer types. Being a local therapeutic, AIRISE-02 circumvents regulatory challenges of systemic nanoparticle delivery, facilitating rapid translation to the clinic. AIRISE-02 is under investigational new drug (IND)-enabling studies, and clinical trials will soon follow.


Asunto(s)
Inmunoterapia , Nanopartículas , ARN Interferente Pequeño , Animales , Ratones , Vacunación
4.
Radiother Oncol ; 150: 225-235, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32598976

RESUMEN

Radiation therapy is a cornerstone of modern cancer therapy alongside surgery, chemotherapy, and immunotherapy, with over half of all cancer patients receiving radiation therapy as part of their treatment regimen. Development of novel radiation sensitizers that can improve the therapeutic window of radiation therapy are sought after, particularly for tumors at an elevated risk of local and regional recurrence such as locally-advanced lung, head and neck, and gastrointestinal tumors. This review discusses clinical strategies to enhance radiotherapy efficacy and decrease toxicity, hence, increasing the overall therapeutic window. A focus is given to the molecular targets that have been identified and their associated mechanisms of action in enhancing radiotherapy. Examples include cell survival and proliferation signaling such as the EGFR and PI3K/AKT/mTOR pathways, DNA repair genes including PARP and ATM/ATR, angiogenic growth factors, epigenetic regulators, and immune checkpoint proteins. By manipulating various mechanisms of tumor resistance to ionizing radiation (IR), targeted therapies hold significant value to increase the therapeutic window of radiotherapy. Further, the use of novel nanoparticles to enhance radiotherapy is also reviewed, including nanoparticle delivery of chemotherapies, metallic (high-Z) nanoparticles, and nanoparticle delivery of targeted therapies - all of which may improve the therapeutic window of radiotherapy by enhancing the tumor response to IR or reducing normal tissue toxicity.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Fosfatidilinositol 3-Quinasas , Radioterapia , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA