Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Cells ; 12(10)2023 05 17.
Article En | MEDLINE | ID: mdl-37408237

Macrophages are important effectors of inflammation resolution that contribute to the elimination of pathogens and apoptotic cells and restoration of homeostasis. Pre-clinical studies have evidenced the anti-inflammatory and pro-resolving actions of GILZ (glucocorticoid-induced leucine zipper). Here, we evaluated the role of GILZ on the migration of mononuclear cells under nonphlogistic conditions and Escherichia coli-evoked peritonitis. TAT-GILZ (a cell-permeable GILZ-fusion protein) injection into the pleural cavity of mice induced monocyte/macrophage influx alongside increased CCL2, IL-10 and TGF-ß levels. TAT-GILZ-recruited macrophages showed a regulatory phenotype, exhibiting increased expression of CD206 and YM1. During the resolving phase of E. coli-induced peritonitis, marked by an increased recruitment of mononuclear cells, lower numbers of these cells and CCL2 levels were found in the peritoneal cavity of GILZ-deficient mice (GILZ-/-) when compared to WT. In addition, GILZ-/- showed higher bacterial loads, lower apoptosis/efferocytosis counts and a lower number of macrophages with pro-resolving phenotypes. TAT-GILZ accelerated resolution of E. coli-evoked neutrophilic inflammation, which was associated with increased peritoneal numbers of monocytes/macrophages, enhanced apoptosis/efferocytosis counts and bacterial clearance through phagocytosis. Taken together, we provided evidence that GILZ modulates macrophage migration with a regulatory phenotype, inducing bacterial clearance and accelerating the resolution of peritonitis induced by E. coli.


Escherichia coli Infections , Peritonitis , Transcription Factors , Animals , Mice , Escherichia coli/metabolism , Escherichia coli Infections/metabolism , Inflammation/metabolism , Macrophages/metabolism , Monocytes/metabolism , Peritonitis/metabolism , Transcription Factors/metabolism
2.
Int Immunopharmacol ; 122: 110609, 2023 Sep.
Article En | MEDLINE | ID: mdl-37429145

We recently demonstrated that clindamycin exhibits activities in acute and chronic models of pain and inflammation. In the present study, we investigated the effects of clindamycin and a clindamycin acetylated derivative (CAD) in models of acute joint inflammation and in a microbiological assay. Joint inflammation was induced in mice by intraarticular (i.a.) injection of zymosan or lipopolysaccharide (LPS). Clindamycin or CAD were administered via the intraperitoneal route 1 h before zymosan or LPS. Paw withdrawal threshold, joint diameter, histological changes, neutrophil recruitment, tumor necrosis factor-α (TNF-α) production and phosphorylation of the IκBα and NF-κB/p65 were evaluated. In vitro assays were used to measure the antibacterial activity of clindamycin and CAD and also their effects on zymosan-induced TNF-α production by RAW264.7 macrophages. Clindamycin exhibited activity against Staphylococcus aureus and Salmonella Typhimurium ATCC® strains at much lower concentrations than CAD. Intraarticular injection of zymosan or LPS induced articular hyperalgesia, edema and neutrophil infiltration in the joints. Zymosan also induced histological changes, NF-κB activation and TNF-α production. Responses induced by zymosan and LPS were inhibited by clindamycin (200 and 400 mg/kg) or CAD (436 mg/kg). Both clindamycin and CAD inhibited in vitro TNF-α production by macrophages. In summary, we provided additional insights of the clindamycin immunomodulatory effects, whose mechanism was associated with NF-κB inhibition and reduced TNF-α production. Such effects were extended to a clindamycin derivative with reduced antibacterial activity, indicating that clindamycin derivatives should be investigated as candidates to drugs that could be useful in the management of inflammatory and painful conditions.


Arthritis , NF-kappa B , Mice , Animals , Tumor Necrosis Factor-alpha/pharmacology , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Clindamycin/therapeutic use , Clindamycin/pharmacology , Neutrophil Infiltration , Zymosan , Lipopolysaccharides/pharmacology , Inflammation/chemically induced , Anti-Bacterial Agents/pharmacology , Edema/chemically induced , Edema/drug therapy
3.
J Ethnopharmacol ; 310: 116417, 2023 Jun 28.
Article En | MEDLINE | ID: mdl-36990302

ETHNOPHARMACOLOGICAL RELEVANCE: Campomanesia lineatifolia Ruiz & Pavón (Myrtaceae), an edible species found in Brazilian Forest, possesses leaves that are traditionally used for the treatment of gastrointestinal disorders in Brazil. Extracts of C. lineatifolia are rich in phenolics and exhibit antioxidant, and gastric antiulcer properties. Furthermore, Campomanesia spp. have been described to possess anti-inflammatory properties, but studies related to chemical constituents of C. lineatifolia are scarce in the literature. AIM OF THE STUDY: This work aims to identify the chemical composition of the phenolic-rich ethanol extract (PEE) from C. lineatifolia leaves and evaluate the anti-inflammatory activity that could be related to its ethnopharmacological use. MATERIALS AND METHODS: The high-speed countercurrent chromatography (HSCCC), using an isocratic and a step gradient elution method, and NMR, HPLC-ESI-QTOF-MS/MS were used to isolate and identify the chemicals of PEE, respectively. Lipopolysaccharide-(LPS)-stimulated THP-1 cells were used to evaluate the anti-inflammatory activities from PEE and the two majority flavonoids isolated by measure TNF-α and NF-κB inhibition assays. RESULTS: Fourteen compounds were isolated from the PEE, further identified by NMR and HPLC-ESI-QTOF-MS/MS, twelve of them are new compounds, and two others are already known for the species. The PEE, quercitrin and myricitrin promoted a concentration-dependent inhibition of TNF-α, and PEE promoted an inhibition of NF-κB pathway. CONCLUSIONS: PEE from C. lineatifolia leaves demonstrated significant anti-inflammatory activity that may be related to the traditional use to treat gastrointestinal disorders.


Myrtaceae , Plant Extracts , Plant Extracts/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Tandem Mass Spectrometry , NF-kappa B/metabolism , Myrtaceae/chemistry , Countercurrent Distribution , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Ethanol/chemistry , Plant Leaves/chemistry
4.
JCI Insight ; 8(8)2023 04 24.
Article En | MEDLINE | ID: mdl-36917195

Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla-afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.


Extracellular Traps , Sepsis , Mice , Animals , Fibrinolysin , Plasminogen , Extracellular Traps/metabolism , Interleukin-6/metabolism , Inflammation/metabolism , Sepsis/metabolism , Fibrin/metabolism
5.
Planta Med ; 89(7): 718-728, 2023 Jun.
Article En | MEDLINE | ID: mdl-36626932

Gouty arthritis (GA) is an inflammatory arthritis triggered by the deposition of monosodium urate monohydrate (MSU) crystals, causing pain, inflammation, and joint damage. Several drugs are currently employed to manage acute flares of GA, but they either have limited effectiveness or induce severe adverse reactions. Ouratea spectabilis is traditionally used in Brazil to treat gastric ulcers and rheumatism. The ethanolic extract of O. spectabilis stems (OSpC) and four biflavanones (ouratein A - D) isolated thereof were evaluated in a murine model of GA induced by the injection of MSU crystals. The underlying mechanism of action of ouratein D was investigated in vitro in cell cultures by measurement of IL-1ß levels by ELISA and Western blot analysis. The administration of OSpC (10, 30 or 100 mg/Kg, p. o.) reduced the migration of total inflammatory cells, monocytes, and neutrophils and diminished the levels of IL-1ß and CXCL1 in the synovial tissue. Among the tested compounds, only ouratein D (1 mg/Kg) reduced the migration of the inflammatory cells and it was shown to be active up to 0.01 mg/Kg (equivalent to 0.34 nM/Kg, p. o.). Treatment of pre-stimulated THP-1 cells (differentiated into macrophages) or BMDMs with ouratein D reduced the release of IL-1ß in both macrophage lines. This biflavanone reduced the activation of caspase-1 (showed by the increase in the cleaved form) in supernatants of cultured BMDMs, evidencing its action in modulating the inflammasome pathway. The obtained results demonstrate the anti-gout properties of O. spectabilis and point out ouratein D as the bioactive component of the assayed extract.


Arthritis, Gouty , Gout , Ochnaceae , Mice , Animals , Ochnaceae/metabolism , Gout/chemically induced , Gout/metabolism , Uric Acid , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis, Gouty/chemically induced , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Interleukin-1beta/metabolism
6.
Cells ; 11(3)2022 02 03.
Article En | MEDLINE | ID: mdl-35159341

Pneumonia is a leading cause of morbidity and mortality. While inflammation is a host protective response that ensures bacterial clearance, a finely regulated response is necessary to prevent bystander tissue damage. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a GC-induced protein with anti-inflammatory and proresolving bioactions, yet the therapeutical role of GILZ in infectious diseases remains unexplored. Herein, we investigate the role and effects of GILZ during acute lung injury (ALI) induced by LPS and Streptococcus pneumoniae infection. GILZ deficient mice (GILZ-/-) presented more severe ALI, characterized by increased inflammation, decreased macrophage efferocytosis and pronounced lung damage. In contrast, pulmonary inflammation, and damage were attenuated in WT mice treated with TAT-GILZ fusion protein. During pneumococcal pneumonia, TAT-GILZ reduced neutrophilic inflammation and prevented the associated lung damage. There was also enhanced macrophage efferocytosis and bacterial clearance in TAT-GILZ-treated mice. Mechanistically, TAT-GILZ enhanced macrophage phagocytosis of pneumococcus, which was lower in GILZ-/- macrophages. Noteworthy, early treatment with TAT-GILZ rescued 30% of S. pneumoniae-infected mice from lethal pneumonia. Altogether, we present evidence that TAT-GILZ enhances host resilience and resistance to pneumococcal pneumonia by controlling pulmonary inflammation and bacterial loads leading to decreased lethality. Exploiting GILZ pathways holds promise for the treatment of severe respiratory infections.


Pneumonia, Pneumococcal , Animals , Glucocorticoids/pharmacology , Inflammation/metabolism , Leucine Zippers , Mice , Pneumonia, Pneumococcal/complications , Pneumonia, Pneumococcal/drug therapy , Streptococcus pneumoniae/metabolism , Transcription Factors/metabolism
7.
JCI Insight ; 7(1)2022 01 11.
Article En | MEDLINE | ID: mdl-34874920

Nonphlogistic migration of macrophages contributes to the clearance of pathogens and apoptotic cells, a critical step for the resolution of inflammation and return to homeostasis. Angiotensin-(1-7) [Ang-(1-7)] is a heptapeptide of the renin-angiotensin system that acts through Mas receptor (MasR). Ang-(1-7) has recently emerged as a novel proresolving mediator, yet Ang-(1-7) resolution mechanisms are not fully determined. Herein, Ang-(1-7) stimulated migration of human and murine monocytes/macrophages in a MasR-, CCR2-, and MEK/ERK1/2-dependent manner. Pleural injection of Ang-(1-7) promoted nonphlogistic mononuclear cell influx alongside increased levels of CCL2, IL-10, and macrophage polarization toward a regulatory phenotype. Ang-(1-7) induction of CCL2 and mononuclear cell migration was also dependent on MasR and MEK/ERK. Of note, MasR was upregulated during the resolution phase of inflammation, and its pharmacological inhibition or genetic deficiency impaired mononuclear cell recruitment during self-resolving models of LPS pleurisy and E. coli peritonitis. Inhibition/absence of MasR was associated with reduced CCL2 levels, impaired phagocytosis of bacteria, efferocytosis, and delayed resolution of inflammation. In summary, we have uncovered a potentially novel proresolving feature of Ang-(1-7), namely the recruitment of mononuclear cells favoring efferocytosis, phagocytosis, and resolution of inflammation. Mechanistically, cell migration was dependent on MasR, CCR2, and the MEK/ERK pathway.


Angiotensin I , Macrophages , Monocytes , Peptide Fragments , Phagocytosis , Proto-Oncogene Mas/metabolism , Angiotensin I/metabolism , Angiotensin I/pharmacology , Animals , Cells, Cultured , Disease Models, Animal , Humans , Inflammation/metabolism , MAP Kinase Signaling System/physiology , Macrophages/drug effects , Macrophages/physiology , Male , Mice , Mice, Inbred BALB C , Monocytes/drug effects , Monocytes/physiology , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Peritonitis , Phagocytosis/drug effects , Phagocytosis/physiology , Phenotype , Receptors, CCR2/metabolism
...