Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Macromol Biosci ; : e2400149, 2024 May 31.
Article En | MEDLINE | ID: mdl-38819531

In recent years, multifunctional nanocarriers that provide simultaneous drug delivery and imaging have attracted enormous attention, especially in cancer treatment. In this research, a biocompatible fluorescent multifunctional nanocarrier is designed for the co-delivery of capsaicin (CPS) and nitrogen-doped graphene quantum dots (N-GQDs) using the pH sensitive amphiphilic block copolymer (poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone), PEtOx-b-PCL). The effects of the critical formulation parameters (the amount of copolymer, the concentration of poly(vinyl alcohol) (PVA) as a stabilizing agent in the inner aqueous phase, and volume of the inner phase) are evaluated to achieve optimal nanoparticle (NP) properties using Central Composite Design. The optimized NPs demonstrated a desirable size distribution (167.8 ± 1.4 nm) with a negative surface charge (-19.9 ± 0.4) and a suitable loading capacity for CPS (70.80 ± 0.05%). The CPS & N-GQD NPs are found to have remarkable toxicity on human breast adenocarcinoma cell line (MCF-7). The solid fluorescent signal is acquired from cells containing multifunctional NPs, according to the confocal microscope imaging results, confirming the significant cellular uptake. This research illustrates the enormous potential for cellular imaging and enhanced cancer therapy offered by multifunctional nanocarriers that combine drug substances with the novel fluorescent agents.

2.
J Phys Condens Matter ; 36(26)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38457842

Observations of superconductivity and charge density waves (CDW) in graphene have been elusive thus far due to weak electron-phonon coupling (EPC) interactions. Here, we report a unique observation of anomalous transport and multiple charge ordering phases at high temperatures (T1∼213K,T2∼325K) in a 0D-2D van der Waals (vdW) heterostructure comprising of single layer graphene (SLG) and functionalized (amine) graphene quantum dots (GQD). The presence of functionalized GQD contributed to charge transfer with shifting of the Dirac point ∼ 0.05 eV above the Fermi level (ab initio simulations) and carrier densityn∼-0.3×1012 cm-2confirming p-doping in SLG and two-fold increase in EPC interaction was achieved. Moreover, we elucidate the interplay between electron-electron and electron-phonon interactions to substantiate high temperature EPC driven charge ordering in the heterostructure through analyses of magnetotransport and weak anti-localization (WAL) framework. Our results provide impetus to investigate strongly correlated phenomena such as CDW and superconducting phase transitions in novel graphene based heterostructures.

3.
Chemistry ; 29(60): e202301845, 2023 Oct 26.
Article En | MEDLINE | ID: mdl-37540499

The pharmacological activity of organotin(IV) complexes in cancer therapy is well recognized but their large applicability is hampered by their poor water solubility. Hence, carbon dots, in particular nitrogen-doped graphene quantum dots (NGQDs), may be a promising alternative for the efficient delivery of organotin(IV) compounds as they have a substantial aqueous solubility, a good chemical stability, and non-toxicity as well as a bright photoluminescence that make them ideal for theranostic applications against cancer. Two different multifunctional nanosystems have been synthesized and fully characterized based on two fragments of organotin-based cytotoxic compounds and 4-formylbenzoic acid (FBA), covalently grafted onto the NGQDs surface. Subsequently, an in vitro determination of the therapeutic and theranostic potential of the achieved multifunctional systems was carried out. The results showed a high cytotoxic potential of the NGQDs-FBA-Sn materials against breast cancer cell line (MDA-MB-231) and a lower effect on a non-cancer cell line (kidney cells, HEK293T). Besides, thanks to their optical properties, the dots enabled their fluorescence molecular imaging in the cytoplasmatic region of the cells pointing towards a successful cellular uptake and a release of the metallodrug inside cancer cells (NGQDs-FBA-Sn).


Graphite , Quantum Dots , Triple Negative Breast Neoplasms , Humans , Graphite/chemistry , Quantum Dots/chemistry , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , HEK293 Cells , Molecular Imaging
4.
Polymers (Basel) ; 15(7)2023 Mar 28.
Article En | MEDLINE | ID: mdl-37050300

Excellent adhesion of electrospun nanofiber (NF) to textile support is crucial for a broad range of their bioapplications, e.g., wound dressing development. We compared the effect of several low- and atmospheric pressure plasma modifications on the adhesion between two parts of composite-polycaprolactone (PCL) nanofibrous mat (functional part) and polypropylene (PP) spunbond fabric (support). The support fabrics were modified before electrospinning by low-pressure plasma oxygen treatment or amine plasma polymer thin film or treated by atmospheric pressure plasma slit jet (PSJ) in argon or argon/nitrogen. The adhesion was evaluated by tensile test and loop test adapted for thin NF mat measurement and the trends obtained by both tests largely agreed. Although all modifications improved the adhesion significantly (at least twice for PSJ treatments), low-pressure oxygen treatment showed to be the most effective as it strengthened adhesion by a factor of six. The adhesion improvement was ascribed to the synergic effect of high treatment homogeneity with the right ratio of surface functional groups and sufficient wettability. The low-pressure modified fabric also stayed long-term hydrophilic (ten months), even though surfaces usually return to a non-wettable state (hydrophobic recovery). In contrast to XPS, highly surface-sensitive water contact angle measurement proved suitable for monitoring subtle surface changes.

5.
J Phys Chem Lett ; 13(49): 11536-11542, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-36475701

In this work, we demonstrate the prospect of chemically synthesizing transition metal (Ni) doped magnetic graphene quantum dots (GQDs) with the sole aim of shedding light on their magnetic properties. Our results show that adsorption of nickel hydroxide on predominantly paramagnetic GQDs reveals antiferromagnetic ordering in the M-T profile around 10 K with change of the spin exchange coupling deviating from J = 1/2 to J = 1, mainly arising from the d-p mixing hybridization between the p orbital of carbon from the GQD and the d orbital of Ni. Furthermore, our results are well complemented by ab initio simulations showing asymmetry of the up and down spins around the Fermi level for nickel hydroxide-doped GQDs with long-range spin polarization. Furthermore, the magnitude of the net magnetic moment generated for doped GQDs on the carbon atoms is found to be site-dependent (surface or edge).

6.
Adv Mater ; 34(45): e2206382, 2022 Nov.
Article En | MEDLINE | ID: mdl-36113982

Succeeding graphene, 2D inorganic materials made of reactive van der Waals layers, like 2D germanane (2D-Ge) derivatives, have attracted great attention because their physicochemical characteristics can be entirely tuned by modulating the nature of the surface substituent. Although very interesting from a scientific point of view, almost all the reported works involving 2D-Ge derivatives are focused on computational studies. Herein, a first prototype of organic-inorganic 2D-Ge heterostructure has been synthesized by covalently anchoring thiol-rich carbon dots (CD-SH) onto 2D allyl germanane (2D-aGe) via a simple and green "one-pot" click chemistry approach. Remarkably, the implanted characteristics of the carbon nanomaterial provide new physicochemical features to the resulting 0D/2D heterostructure, making possible its implementation in yet unexplored optoelectronic tasks-e.g., as a fluorescence resonance energy transfer (FRET) sensing system triggered by supramolecular π-π interactions-that are inaccessible for the pristine 2D-aGe counterpart. Consequently, this work builds a foundation toward the robust achievement of functional organic-inorganic 2D-Ge nanoarchitectonics through covalently assembling thiol-rich carbon nanoallotropes on commercially available 2D-aGe.

7.
Nanotechnology ; 33(32)2022 May 20.
Article En | MEDLINE | ID: mdl-35504253

In recent years, graphene-based van der Waals (vdW) heterostructures have come into prominence showcasing interesting charge transfer dynamics which is significant for optoelectronic applications. These novel structures are highly tunable depending on several factors such as the combination of the two-dimensional materials, the number of layers and band alignment exhibiting interfacial charge transfer dynamics. Here, we report on a novel graphene based 0D-2D vdW heterostructure between graphene and amine-functionalized graphene quantum dots (GQD) to investigate the interfacial charge transfer and doping possibilities. Using a combination ofab initiosimulations and Kelvin probe force microscopy (KPFM) measurements, we confirm that the incorporation of functional GQDs leads to a charge transfer induced p-type doping in graphene. A shift of the Dirac point by 0.05 eV with respect to the Fermi level (EF) in the graphene from the heterostructure was deduced from the calculated density of states. KPFM measurements revealed an increment in the surface potential of the GQD in the 0D-2D heterostructure by 29 mV with respect to graphene. Furthermore, we conducted power dependent Raman spectroscopy for both graphene and the heterostructure samples. An optical doping-induced gating effect resulted in a stiffening of theGband for electrons and holes in both samples (graphene and the heterostructure), suggesting a breakdown of the adiabatic Born-Oppenheimer approximation. Moreover, charge imbalance and renormalization of the electron-hole dispersion under the additional influence of the doped functional GQDs is pointing to an asymmetry in conduction and carrier mobility.

8.
Molecules ; 27(4)2022 Feb 16.
Article En | MEDLINE | ID: mdl-35209122

The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 µg/L/day for Cu2+ versus 15 µg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.


Antiviral Agents/chemistry , COVID-19/prevention & control , Coated Materials, Biocompatible/chemistry , Nanofibers/chemistry , SARS-CoV-2/chemistry , Animals , COVID-19/transmission , Chlorocebus aethiops , Copper/chemistry , Gold/chemistry , Humans , Polyesters/chemistry , Titanium/chemistry , Vero Cells
9.
Membranes (Basel) ; 11(12)2021 Dec 08.
Article En | MEDLINE | ID: mdl-34940466

Copper-coated nanofibrous materials are desirable for catalysis, electrochemistry, sensing, and biomedical use. The preparation of copper or copper-coated nanofibers can be pretty challenging, requiring many chemical steps that we eliminated in our robust approach, where for the first time, Cu was deposited by magnetron sputtering onto temperature-sensitive polymer nanofibers. For the first time, the large-scale modeling of PCL films irradiation by molecular dynamics simulation was performed and allowed to predict the ions penetration depth and tune the deposition conditions. The Cu-coated polycaprolactone (PCL) nanofibers were thoroughly characterized and tested as antibacterial agents for various Gram-positive and Gram-negative bacteria. Fast release of Cu2+ ions (concentration up to 3.4 µg/mL) led to significant suppression of E. coli and S. aureus colonies but was insufficient against S. typhimurium and Ps. aeruginosa. The effect of Cu layer oxidation upon contact with liquid media was investigated by X-ray photoelectron spectroscopy revealing that, after two hours, 55% of Cu atoms are in form of CuO or Cu(OH)2. The Cu-coated nanofibers will be great candidates for wound dressings thanks to an interesting synergistic effect: on the one hand, the rapid release of copper ions kills bacteria, while on the other hand, it stimulates the regeneration with the activation of immune cells. Indeed, copper ions are necessary for the bacteriostatic action of cells of the immune system. The reactive CO2/C2H4 plasma polymers deposited onto PCL-Cu nanofibers can be applied to grafting of viable proteins, peptides, or drugs, and it further explores the versatility of developed nanofibers for biomedical applications use.

10.
Polymers (Basel) ; 13(24)2021 Dec 15.
Article En | MEDLINE | ID: mdl-34960945

Polypropylene is a typical representative of synthetic polymers that, for many applications including adhesive joints, requires an increase in wettability and chemical surface reactivity. Plasma processing offers efficient methods for such surface modifications. A particular disadvantage of the plasma jets can be the small plasma area. Here, we present a cold atmospheric plasma radio-frequency slit jet developed with a width of 150 mm applied to polypropylene plasma treatment in Ar, Ar/O2 and Ar/N2 We identified two main parameters influencing the tensile strength of adhesive joints mediated by epoxy adhesive DP 190, nitrogen content, and the amount of low molecular weight oxidized materials (LMWOMs). Nitrogen functional groups promoted adhesion between epoxy adhesive DP 190 and the PP by taking part in the curing process. LMWOMs formed a weak boundary layer, inhibiting adhesion by inducing a cohesive failure of the joint. A trade off between these two parameters determined the optimized conditions at which the strength of the adhesive joint increased 4.5 times. Higher adhesion strength was previously observed when using a translational plasma gliding arc plasma jet with higher plasma gas temperatures, resulting in better cross linking of polymer chains caused by local PP melting.

11.
Sci Rep ; 11(1): 17870, 2021 09 09.
Article En | MEDLINE | ID: mdl-34504247

Regeneration of large bone defects caused by trauma or tumor resection remains one of the biggest challenges in orthopedic surgery. Because of the limited availability of autograft material, the use of artificial bone is prevalent; however, the primary role of currently available artificial bone is restricted to acting as a bone graft extender owing to the lack of osteogenic ability. To explore whether surface modification might enhance artificial bone functionality, in this study we applied low-pressure plasma technology as next-generation surface treatment and processing strategy to chemically (amine) modify the surface of beta-tricalcium phosphate (ß-TCP) artificial bone using a CH4/N2/He gas mixture. Plasma-treated ß-TCP exhibited significantly enhanced hydrophilicity, facilitating the deep infiltration of cells into interconnected porous ß-TCP. Additionally, cell adhesion and osteogenic differentiation on the plasma-treated artificial bone surfaces were also enhanced. Furthermore, in a rat calvarial defect model, the plasma treatment afforded high bone regeneration capacity. Together, these results suggest that amine modification of artificial bone by plasma technology can provide a high osteogenic ability and represents a promising strategy for resolving current clinical limitations regarding the use of artificial bone.


Biocompatible Materials/metabolism , Bone Regeneration/physiology , Bone Substitutes/metabolism , Calcium Phosphates/metabolism , Osteogenesis/physiology , Animals , Bone Substitutes/therapeutic use , Bone Transplantation/methods , Cell Differentiation/physiology , Rats
12.
Int J Mol Sci ; 21(24)2020 Dec 12.
Article En | MEDLINE | ID: mdl-33322781

Amine-coated biodegradable materials based on synthetic polymers have a great potential for tissue remodeling and regeneration because of their excellent processability and bioactivity. In the present study, we have investigated the influence of various chemical compositions of amine plasma polymer (PP) coatings and the influence of the substrate morphology, represented by polystyrene culture dishes and polycaprolactone nanofibers (PCL NFs), on the behavior of vascular smooth muscle cells (VSMCs). Although all amine-PP coatings improved the initial adhesion of VSMCs, 7-day long cultivation revealed a clear preference for the coating containing about 15 at.% of nitrogen (CPA-33). The CPA-33 coating demonstrated the ideal combination of good water stability, a sufficient amine group content, and favorable surface wettability and morphology. The nanostructured morphology of amine-PP-coated PCL NFs successfully slowed the proliferation rate of VSMCs, which is essential in preventing restenosis of vascular replacements in vivo. At the same time, CPA-33-coated PCL NFs supported the continuous proliferation of VSMCs during 7-day long cultivation, with no significant increase in cytokine secretion by RAW 264.7 macrophages. The CPA-33 coating deposited on biodegradable PCL NFs therefore seems to be a promising material for manufacturing small-diameter vascular grafts, which are still lacking on the current market.


Amines/chemistry , Coated Materials, Biocompatible/pharmacology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Nanofibers/chemistry , Plasma/chemistry , Polymers/chemistry , Amines/adverse effects , Amines/immunology , Amines/pharmacology , Animals , Cell Adhesion/drug effects , Cell Adhesion/immunology , Cell Proliferation/drug effects , Cells, Cultured , Coated Materials, Biocompatible/adverse effects , Coated Materials, Biocompatible/chemistry , Macrophages/drug effects , Macrophages/metabolism , Mice , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/growth & development , Myocytes, Smooth Muscle/metabolism , Nanofibers/adverse effects , Photoelectron Spectroscopy , Plasma/immunology , Polyesters/chemistry , Polymers/adverse effects , Polymers/pharmacology , RAW 264.7 Cells , Rats , Surface Properties/drug effects , Tissue Scaffolds/adverse effects , Tissue Scaffolds/chemistry
13.
Polymers (Basel) ; 12(6)2020 Jun 22.
Article En | MEDLINE | ID: mdl-32580496

Biodegradable composite nanofibers were electrospun from poly(ε-caprolactone) (PCL) and poly(ethylene oxide) (PEO) mixtures dissolved in acetic and formic acids. The variation of PCL:PEO concentration in the polymer blend, from 5:95 to 75:25, revealed the tunability of the hydrolytic stability and mechanical properties of the nanofibrous mats. The degradation rate of PCL/PEO nanofibers can be increased compared to pure PCL, and the mechanical properties can be improved compared to pure PEO. Although PCL and PEO have been previously reported as immiscible, the electrospinning into nanofibers having restricted dimensions (250-450 nm) led to a microscopically mixed PCL/PEO blend. However, the hydrolytic stability and tensile tests revealed the segregation of PCL into few-nanometers-thin fibrils in the PEO matrix of each nanofiber. A synergy phenomenon of increased stiffness appeared for the high concentration of PCL in PCL/PEO nanofibrous mats. The pure PCL and PEO mats had a Young's modulus of about 12 MPa, but the mats made of high concentration PCL in PCL/PEO solution exhibited 2.5-fold higher values. The increase in the PEO content led to faster degradation of mats in water and up to a 20-fold decrease in the nanofibers' ductility. The surface of the PCL/PEO nanofibers was functionalized by an amine plasma polymer thin film that is known to increase the hydrophilicity and attach proteins efficiently to the surface. The combination of different PCL/PEO blends and amine plasma polymer coating enabled us to tune the surface functionality, the hydrolytic stability, and the mechanical properties of biodegradable nanofibrous mats.

14.
Int J Mol Sci ; 20(14)2019 Jul 19.
Article En | MEDLINE | ID: mdl-31331030

BACKGROUND: Endothelial progenitor cells (EPCs) were indicated in vascular repair, angiogenesis of ischemic organs, and inhibition of formation of initial hyperplasia. Differentiation of endothelial cells (ECs) from human induced pluripotent stem cells (hiPSC)-derived endothelial cells (hiPSC-ECs) provides an unlimited supply for clinical application. Furthermore, magnetic cell labelling offers an effective way of targeting and visualization of hiPSC-ECs and is the next step towards in vivo studies. METHODS: ECs were differentiated from hiPSCs and labelled with uncoated superparamagnetic iron-oxide nanoparticles (uSPIONs). uSPION uptake was compared between hiPSC-ECs and mature ECs isolated from patients by software analysis of microscopy pictures after Prussian blue cell staining. The acute and long-term cytotoxic effects of uSPIONs were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay) and Annexin assay. RESULTS: We showed, for the first time, uptake of uncoated SPIONs (uSPIONs) by hiPSC-ECs. In comparison with mature ECs of identical genetic background hiPSC-ECs showed lower uSPION uptake. However, all the studied endothelial cells were effectively labelled and showed magnetic properties even with low labelling concentration of uSPIONs. uSPIONs prepared by microwave plasma synthesis did not show any cytotoxicity nor impair endothelial properties. CONCLUSION: We show that hiPSC-ECs labelling with low concentration of uSPIONs is feasible and does not show any toxic effects in vitro, which is an important step towards animal studies.


Cell Differentiation , Endothelial Cells/cytology , Endothelial Cells/metabolism , Ferric Compounds , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Magnetite Nanoparticles , Biomarkers , Cell Survival , Cells, Cultured , Endothelial Cells/ultrastructure , Ferric Compounds/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/ultrastructure , Magnetite Nanoparticles/chemistry
15.
Anal Bioanal Chem ; 411(29): 7689-7697, 2019 Nov.
Article En | MEDLINE | ID: mdl-31250063

We report on the successful application of carboxyl-rich plasma polymerized (PP) films as a matrix layer for bioreceptor immobilization in surface plasmon resonance (SPR) immunosensing. Composition and chemical properties of the carboxyl-rich PP films deposited from a mixture of maleic anhydride and acetylene were investigated. Changes in the films stored in air, water, and buffer were studied and the involved chemical changes were described. Performance in SPR immunosensing was evaluated on interactions of human serum albumin (HSA) with a specific monoclonal antibody. The comparison with the mixed self-assembled monolayer of mercaptoundecanoic acid and mercaptohexanol (MUA/MCH) and one of the most widely used surfaces for SPR, the 2D and 3D carboxymethylated dextran (CMD), was presented to show the efficacy of plasma polymerized matrix layers for biosensing. The PP film-based SPR immunosensor provided a similar detection limit of HSA (100 ng/mL) as MUA/MCH- (100 ng/mL) and 3D CMD (50 ng/mL)-based sensors. However, the response levels were about twice higher in case of the PP film-based immunosensor than in case of MUA/MCH-based alternative. The PP film surfaces had similar binding capacity towards antibody as the 3D CMD layers. The response of PP film-based sensor towards HSA was comparable to 3D CMD-based sensor up to 2.5 µg/mL. For the higher concentrations (> 10 µg/mL), the response of PP film-based immunosensor was lower due to inaccessibility of active sites of the immobilized antibody inside the flat PP film surface. We have demonstrated that due to its high stability and cost-effective straightforward preparation, the carboxyl-rich PP films represent an efficient alternative to self-assembled monolayers (SAM) and dextran-based layers in label-free immunosensing. Graphical abstract.


Acetylene/chemistry , Maleic Anhydrides/chemistry , Plasma Gases , Polymers/chemistry , Surface Plasmon Resonance/methods , Biosensing Techniques , Limit of Detection , Microscopy, Atomic Force , Sulfhydryl Compounds/chemistry , Surface Properties
16.
Nanomaterials (Basel) ; 9(4)2019 Apr 19.
Article En | MEDLINE | ID: mdl-31010178

Biodegradable nanofibers are extensively employed in different areas of biology and medicine, particularly in tissue engineering. The electrospun polycaprolactone (PCL) nanofibers are attracting growing interest due to their good mechanical properties and a low-cost structure similar to the extracellular matrix. However, the unmodified PCL nanofibers exhibit an inert surface, hindering cell adhesion and negatively affecting their further fate. The employment of PCL nanofibrous scaffolds for wound healing requires a certain modification of the PCL surface. In this work, the morphology of PCL nanofibers is optimized by the careful tuning of electrospinning parameters. It is shown that the modification of the PCL nanofibers with the COOH plasma polymers and the subsequent binding of NH2 groups of protein molecules is a rather simple and technologically accessible procedure allowing the adhesion, early spreading, and growth of human fibroblasts to be boosted. The behavior of fibroblasts on the modified PCL surface was found to be very different when compared to the previously studied cultivation of mesenchymal stem cells on the PCL nanofibrous meshes. It is demonstrated by X-ray photoelectron spectroscopy (XPS) that the freeze-thawed platelet-rich plasma (PRP) immobilization can be performed via covalent and non-covalent bonding and that it does not affect biological activity. The covalently bound components of PRP considerably reduce the fibroblast apoptosis and increase the cell proliferation in comparison to the unmodified PCL nanofibers or the PCL nanofibers with non-covalent bonding of PRP. The reported research findings reveal the potential of PCL matrices for application in tissue engineering, while the plasma modification with COOH groups and their subsequent covalent binding with proteins expand this potential even further. The use of such matrices with covalently immobilized PRP for wound healing leads to prolonged biological activity of the immobilized molecules and protects these biomolecules from the aggressive media of the wound.

17.
Sci Rep ; 9(1): 3880, 2019 Mar 07.
Article En | MEDLINE | ID: mdl-30846777

Magnetic force microscopy has unsurpassed capabilities in analysis of nanoscale and microscale magnetic samples and devices. Similar to other Scanning Probe Microscopy techniques, quantitative analysis remains a challenge. Despite large theoretical and practical progress in this area, present methods are seldom used due to their complexity and lack of systematic understanding of related uncertainties and recommended best practice. Use of the Tip Transfer Function (TTF) is a key concept in making Magnetic Force Microscopy measurements quantitative. We present a numerical study of several aspects of TTF reconstruction using multilayer samples with perpendicular magnetisation. We address the choice of numerical approach, impact of non-periodicity and windowing, suitable conventions for data normalisation and units, criteria for choice of regularisation parameter and experimental effects observed in real measurements. We present a simple regularisation parameter selection method based on TTF width and verify this approach via numerical experiments. Examples of TTF estimation are shown on both 2D and 3D experimental datasets. We give recommendations on best practices for robust TTF estimation, including the choice of windowing function, measurement strategy and dealing with experimental error sources. A method for synthetic MFM data generation, suitable for large scale numerical experiments is also presented.

18.
Phys Chem Chem Phys ; 20(30): 20070-20077, 2018 Aug 01.
Article En | MEDLINE | ID: mdl-30024013

The deposition of epoxide groups by plasma polymerization opens new horizons for robust and quick immobilization of biomolecules on any type of substrate. However, as of now there are just very few papers dealing with the deposition of epoxy layers by plasma polymerization, probably due to the high reactivity of this group leading to a low functionalization efficiency. In this work we carried out an extensive experimental and theoretical investigation of plasma synthesis of epoxide groups from a low pressure allyl glycydyl ether (AGE) plasma. The influence of composite parameter W/F and the working pressure on the density of epoxide groups and the layer stability was thoroughly addressed. It was found that by increasing the working pressure it is possible to sufficiently raise the concentration of epoxide groups. The composite parameter W/F was shown to be a crucial parameter in affecting the density of epoxides. An optimal value of W/F of around 2.3 eV per molecule leading to the highest density of epoxides produced in the process at 15 Pa was revealed through FT-IR and XPS findings. This value correlates well with the ab initio calculations suggesting that the lowest bond dissociation energy belongs to the C-O bond of the epoxide ring. Therefore, in order to increase the density of epoxides deposited by plasma polymerization, a precursor molecule containing at least two epoxide rings is strongly advised to be employed.

19.
Sensors (Basel) ; 17(2)2017 Feb 09.
Article En | MEDLINE | ID: mdl-28208762

Graphite oxide has been investigated as a possible room-temperature chemiresistive sensor of ammonia in a gas phase. Graphite oxide was synthesized from high purity graphite using the modified Hummers method. The graphite oxide sample was investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Sensing properties were tested in a wide range of ammonia concentrations in air (10-1000 ppm) and under different relative humidity levels (3%-65%). It was concluded that the graphite oxide-based sensor possessed a good response to NH3 in dry synthetic air (ΔR/R0 ranged from 2.5% to 7.4% for concentrations of 100-500 ppm and 3% relative humidity) with negligible cross-sensitivity towards H2 and CH4. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing the ambient relative humidity led to an increase of the sensor response. The highest response of 22.2% for 100 ppm of ammonia was achieved at a 65% relative humidity level.

20.
AAPS PharmSciTech ; 18(1): 72-81, 2017 01 01.
Article En | MEDLINE | ID: mdl-26883261

In this study, biodegradable poly(ε-caprolactone) (PCL) nanofibers (PCL-NF), collagen-coated PCL nanofibers (Col-c-PCL), and titanium dioxide-incorporated PCL (TiO2-i-PCL) nanofibers were prepared by electrospinning technique to study the surface and structural compatibility of these scaffolds for skin tisuue engineering. Collagen coating over the PCL nanofibers was done by electrospinning process. Morphology of PCL nanofibers in electrospinning was investigated at different voltages and at different concentrations of PCL. The morphology, interaction between different materials, surface property, and presence of TiO2 were studied by scanning electron microscopy (SEM), Fourier transform IR spectroscopy (FTIR), contact angle measurement, energy dispersion X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). MTT assay and cell adhesion study were done to check biocompatibilty of these scaffolds. SEM study confirmed the formation of nanofibers without beads. FTIR proved presence of collagen on PCL scaffold, and contact angle study showed increment of hydrophilicity of Col-c-PCL and TiO2-i-PCL due to collagen coating and incorporation of TiO2, respectively. EDX and XPS studies revealed distribution of entrapped TiO2 at molecular level. MTT assay and cell adhesion study using L929 fibroblast cell line proved viability of cells with attachment of fibroblasts over the scaffold. Thus, in a nutshell, we can conclude from the outcomes of our investigational works that such composite can be considered as a tissue engineered construct for skin wound healing.


Biocompatible Materials/chemistry , Polyesters/chemistry , Skin/chemistry , Cell Adhesion/physiology , Collagen/chemistry , Fibroblasts/chemistry , Hydrophobic and Hydrophilic Interactions , Nanofibers/chemistry , Photoelectron Spectroscopy/methods , Surface Properties , Tissue Engineering/methods , Tissue Scaffolds , Titanium/chemistry
...