Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Pract Lab Med ; 39: e00355, 2024 Mar.
Article En | MEDLINE | ID: mdl-38313811

Reporting a measurement procedure and its analytical performance following method evaluation in a peer-reviewed journal is an important means for clinical laboratory practitioners to share their findings. It also represents an important source of evidence base to help others make informed decisions about their practice. At present, there are significant variations in the information reported in laboratory medicine journal publications describing the analytical performance of measurement procedures. These variations also challenge authors, readers, reviewers, and editors in deciding the quality of a submitted manuscript. The International Federation of Clinical Chemistry and Laboratory Medicine Working Group on Method Evaluation Protocols (IFCC WG-MEP) developed a checklist and recommends its adoption to enable a consistent approach to reporting method evaluation and analytical performance characteristics of measurement procedures in laboratory medicine journals. It is envisioned that the LEAP checklist will improve the standardisation of journal publications describing method evaluation and analytical performance characteristics, improving the quality of the evidence base that is relied upon by practitioners.

3.
Clin Chem Lab Med ; 62(5): 911-918, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38063179

OBJECTIVES: Interference from isomeric steroids is a potential cause of disparity between mass spectrometry-based 17-hydroxyprogesterone (17OHP) results. We aimed to assess the proficiency of mass spectrometry laboratories to report 17OHP in the presence of known isomeric steroids. METHODS: A series of five samples were prepared using a previously demonstrated commutable approach. These samples included a control (spiked to 15.0 nmol/L 17OHP) and four challenge samples further enriched with equimolar concentrations of 17OHP isomers (11α-hydroxyprogesterone, 11ß-hydroxyprogesterone, 16α-hydroxyprogesterone or 21-hydroxyprogesterone). These samples were distributed to 38 participating laboratories that reported serum 17OHP results using mass spectrometry in two external quality assurance programs. The result for each challenge sample was compared to the control sample submitted by each participant. RESULTS: Twenty-six laboratories (68 % of distribution) across three continents returned results. Twenty-five laboratories used liquid chromatography-tandem mass spectrometry (LC-MS/MS), and one used gas chromatography-tandem mass spectrometry to measure 17OHP. The all-method median of the control sample was 14.3 nmol/L, ranging from 12.4 to 17.6 nmol/L. One laboratory had results that approached the lower limit of tolerance (minus 17.7 % of the control sample), suggesting the isomeric steroid caused an irregular result. CONCLUSIONS: Most participating laboratories demonstrated their ability to reliably measure 17OHP in the presence of the four clinically relevant isomeric steroids. The performance of the 12 (32 %) laboratories that did not engage in this activity remains unclear. We recommend that all laboratories offering LC-MS/MS analysis of 17OHP in serum, plasma, or dried bloodspots determine that the isomeric steroids are appropriately separated.


Hydroxyprogesterones , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Sensitivity and Specificity , 17-alpha-Hydroxyprogesterone , Steroids
4.
Ann Clin Biochem ; 61(1): 3-7, 2024 Jan.
Article En | MEDLINE | ID: mdl-37838926

Reporting a measurement procedure and its analytical performance following method evaluation in a peer-reviewed journal is an important means for clinical laboratory practitioners to share their findings. It also represents an important source of evidence base to help others make informed decisions about their practice. At present, there are significant variations in the information reported in laboratory medicine journal publications describing the analytical performance of measurement procedures. These variations also challenge authors, readers, reviewers and editors in deciding the quality of a submitted manuscript. The International Federation of Clinical Chemistry and Laboratory Medicine Working Group on Method Evaluation Protocols (IFCC WG-MEP) developed a checklist and recommends its adoption to enable a consistent approach to reporting method evaluation and analytical performance characteristics of measurement procedures in laboratory medicine journals. It is envisioned that the LEAP checklist will improve the standardisation of journal publications describing method evaluation and analytical performance characteristics, improving the quality of the evidence base that is relied upon by practitioners.


Checklist , Clinical Laboratory Services , Humans , Reference Standards , Laboratories
5.
Clin Chem Lab Med ; 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37838925

Reporting a measurement procedure and its analytical performance following method evaluation in a peer-reviewed journal is an important means for clinical laboratory practitioners to share their findings. It also represents an important source of evidence base to help others make informed decisions about their practice. At present, there are significant variations in the information reported in laboratory medicine journal publications describing the analytical performance of measurement procedures. These variations also challenge authors, readers, reviewers, and editors in deciding the quality of a submitted manuscript. The International Federation of Clinical Chemistry and Laboratory Medicine Working Group on Method Evaluation Protocols (IFCC WG-MEP) developed a checklist and recommends its adoption to enable a consistent approach to reporting method evaluation and analytical performance characteristics of measurement procedures in laboratory medicine journals. It is envisioned that the LEAP checklist will improve the standardisation of journal publications describing method evaluation and analytical performance characteristics, improving the quality of the evidence base that is relied upon by practitioners.

6.
Biochem Med (Zagreb) ; 33(3): 030505, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37841772

Reporting a measurement procedure and its analytical performance following method evaluation in a peer-reviewed journal is an important means for clinical laboratory practitioners to share their findings. It also represents an important source of evidence base to help others make informed decisions about their practice. At present, there are significant variations in the information reported in laboratory medicine journal publications describing the analytical performance of measurement procedures. These variations also challenge authors, readers, reviewers, and editors in deciding the quality of a submitted manuscript. The International Federation of Clinical Chemistry and Laboratory Medicine Working Group on Method Evaluation Protocols (IFCC WG-MEP) developed a checklist and recommends its adoption to enable a consistent approach to reporting method evaluation and analytical performance characteristics of measurement procedures in laboratory medicine journals. It is envisioned that the Laboratory Evaluation and Analytical Performance Characteristics (LEAP) checklist will improve the standardisation of journal publications describing method evaluation and analytical performance characteristics, improving the quality of the evidence base that is relied upon by practitioners.


Checklist , Clinical Laboratory Services , Humans , Laboratories
7.
Scand J Clin Lab Invest ; 83(7): 467-469, 2023 Nov.
Article En | MEDLINE | ID: mdl-37838359

Reporting a measurement procedure and its analytical performance following method evaluation in a peer-reviewed journal is an important means for clinical laboratory practitioners to share their findings. It also represents an important source of evidence base to help others make informed decisions about their practice. At present, there are significant variations in the information reported in laboratory medicine journal publications describing the analytical performance of measurement procedures. These variations also challenge authors, readers, reviewers, and editors in deciding the quality of a submitted manuscript.The International Federation of Clinical Chemistry and Laboratory Medicine Working Group on Method Evaluation Protocols (IFCC WG-MEP) developed a checklist and recommends its adoption to enable a consistent approach to reporting method evaluation and analytical performance characteristics of measurement procedures in laboratory medicine journals. It is envisioned that the LEAP checklist will improve the standardisation of journal publications describing method evaluation and analytical performance characteristics, improving the quality of the evidence base that is relied upon by practitioners.


Checklist , Clinical Laboratory Services , Humans , Reference Standards , Laboratories , Laboratories, Clinical
8.
Clin Chim Acta ; 551: 117605, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37844680

Reporting a measurement procedure and its analytical performance following method evaluation in a peer-reviewed journal is an important means for clinical laboratory practitioners to share their findings. It also represents an important source of evidence base to help others make informed decisions about their practice. At present, there are significant variations in the information reported in laboratory medicine journal publications describing the analytical performance of measurement procedures. These variations also challenge authors, readers, reviewers, and editors in deciding the quality of a submitted manuscript. The International Federation of Clinical Chemistry and Laboratory Medicine Working Group on Method Evaluation Protocols (IFCC WG-MEP) developed a checklist and recommends its adoption to enable a consistent approach to reporting method evaluation and analytical performance characteristics of measurement procedures in laboratory medicine journals. It is envisioned that the LEAP checklist will improve the standardisation of journal publications describing method evaluation and analytical performance characteristics, improving the quality of the evidence base that is relied upon by practitioners.


Checklist , Clinical Laboratory Services , Humans , Reference Standards , Laboratories
10.
Clin Chem Lab Med ; 61(5): 751-758, 2023 04 25.
Article En | MEDLINE | ID: mdl-36327459

Method evaluation is one of the critical components of the quality system that ensures the ongoing quality of a clinical laboratory. As part of implementing new methods or reviewing best practices, the peer-reviewed published literature is often searched for guidance. From the outset, Clinical Chemistry and Laboratory Medicine (CCLM) has a rich history of publishing methods relevant to clinical laboratory medicine. An insight into submissions, from editors' and reviewers' experiences, shows that authors still struggle with method evaluation, particularly the appropriate requirements for validation in clinical laboratory medicine. Here, we consider through a series of discussion points an overview of the status, challenges, and needs of method evaluation from the perspective of clinical laboratory medicine. We identify six key high-level aspects of clinical laboratory method evaluation that potentially lead to inconsistency. 1. Standardisation of terminology, 2. Selection of analytical performance specifications, 3. Experimental design of method evaluation, 4. Sample requirements of method evaluation, 5. Statistical assessment and interpretation of method evaluation data, and 6. Reporting of method evaluation data. Each of these areas requires considerable work to harmonise the practice of method evaluation in laboratory medicine, including more empirical studies to be incorporated into guidance documents that are relevant to clinical laboratories and are freely and widely available. To further close the loop, educational activities and fostering professional collaborations are essential to promote and improve the practice of method evaluation procedures.


Clinical Laboratory Services , Laboratories, Clinical , Humans , Clinical Laboratory Techniques , Laboratories
11.
Clin Biochem ; 97: 1-10, 2021 Nov.
Article En | MEDLINE | ID: mdl-34419456

Breast milk is an emerging matrix for vitamin D assessment of breastfed infants and their mothers. It is considered a more reliable indicator of infant intake than the assessment of maternal circulating vitamin D. With the improved sensitivity of mass spectrometry-based technologies, this method principle has been the recent mainstay for the quantitation of various vitamin D metabolites in breast milk for population-based clinical trials. There are still several areas across the total testing process (pre-analytical, analytical and post-analytical) to be defined and harmonised to translate breast milk vitamin D measurement by liquid chromatography-tandem mass spectrometry (LC-MS/MS) from population-based research to routine clinical use and public health applications. Pre-analytically, the determination of the best form of vitamin D to measure in breast milk requires more evidence. Analytically, standardisation of the methods to allow for comparability of results is required. Post analytically, breast milk vitamin D decision limits are needed to turn the individual numerical outputs into clinically meaningful results. This review aims to synthesise the current evidence and utility of measurement of breast milk vitamin D by LC-MS/MS and to lead a future discussion on best practices to allow for its clinical utility beyond its current research-based use.


Chromatography, Liquid/methods , Milk, Human/chemistry , Tandem Mass Spectrometry/methods , Vitamin D/analysis , Female , Humans , Infant , Maternal Nutritional Physiological Phenomena , Prevalence , Recommended Dietary Allowances , Solid Phase Extraction , Vitamin D/chemistry , Vitamin D/metabolism , Vitamin D Deficiency/epidemiology
12.
Clin Chem Lab Med ; 58(10): 1731-1739, 2020 09 25.
Article En | MEDLINE | ID: mdl-32697750

Objectives Our recent survey of 44 mass spectrometry laboratories across 17 countries identified variation in internal standard (IS) choice for the measurement of serum/plasma 17α-hydroxyprogesterone (17OHP) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The choice of IS may contribute to inter-method variations. This study evaluated the effect of two common isotopically labeled IS on the quantification of 17OHP by LC-MS/MS. Methods Three collaborating LC-MS/MS laboratories from Asia, Europe and Australia, who routinely measure serum 17OHP, compared two IS, (1) IsoSciences carbon-13 labeled 17OHP-[2,3,4-13C3], and (2) IsoSciences deuterated 17OHP-[2,2,4,6,6,21,21,21-2H]. This was performed as part of their routine patient runs using their respective laboratory standard operating procedure. Results The three laboratories measured 99, 89, 95 independent samples, respectively (up to 100 nmol/L) using the 13C- and 2H-labeled IS. The slopes of the Passing-Bablok regression ranged 0.98-1.00 (all 95% confidence interval [CI] estimates included the line of identity), and intercept of <0.1 nmol/L. Average percentage differences of -0.04% to -5.4% were observed between the two IS materials, which were less than the optimal bias specification of 7% determined by biological variation, indicating no clinically significant difference. The results of 12 Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQAP) proficiency samples (1-40 nmol/L) measured by the laboratories were all within the RCPAQAP analytical performance specifications for both IS. Conclusions Overall, the comparison between the results of 13C- and 2H-labeled IS for 17OHP showed good agreement, and show no clinically significant bias when incorporated into the LC-MS/MS methods employed in the collaborating laboratories.


17-alpha-Hydroxyprogesterone/blood , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , 17-alpha-Hydroxyprogesterone/standards , Humans , Isotopes , Reference Standards
13.
Clin Chem Lab Med ; 58(5): 817-827, 2020 04 28.
Article En | MEDLINE | ID: mdl-31348755

Background The current millennium has seen an explosion in vitamin D testing with the overarching aim of requests to clinically stratify patients as replete or deficient in vitamin D. At a population level, dried blood spot (DBS) sampling offers a less invasive and more practical application for assessment of vitamin D status. We have therefore aimed to develop a sensitive and robust DBS vitamin D method that is traceable to serum for use in population-based studies. Methods Blood spots, calibrators and controls were prepared by punching a 3.2 mm DBS from filter paper and placed into a 96-well micro-plate. The DBS disk was eluted with a combination of water-methanol and internal standard (ISTD) solution followed by supported-liquid extraction and derivatisation. The extract was analysed by liquid-chromatography tandem-mass spectrometry in positive electrospray-ionisation mode with 732.5 > 673.4 and 738.4 > 679.4 m/z ion-transitions for derivatised vitamin D and the ISTD, respectively. Vitamin D results were made traceable to the National Institute of Standards and Technology reference material through the inclusion of Chromsystems vitamin D calibrators. Results 25-Hydroxy-vitamin D3 and its related ISTD were detected at a retention time of 7 min. The seven-point calibration-curve consistently demonstrated a coefficient of determination of 0.99 with an experimentally determined reportable range of 0.5-376 nmol/L. Method validation studies using DBS samples demonstrated 12.9% between-assay imprecision at 45 nmol/L, 84% average recovery and high correlation with plasma vitamin D (correlation coefficient = 0.86). Conclusions We have successfully developed an analytical method for vitamin D quantitation from DBSs which will be applied to our population-based vitamin D research study. This approach improves traceability of DBS results and potentially could be used broadly for other DBS measurands that require comparison to serum/plasma for their interpretation.


Dried Blood Spot Testing , Vitamin D/blood , Adolescent , Adult , Aged , Calcifediol/blood , Calcifediol/chemistry , Calibration , Child , Child, Preschool , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Dried Blood Spot Testing/standards , Female , Humans , Male , Middle Aged , Reference Standards , Reproducibility of Results , Tandem Mass Spectrometry/methods , Tandem Mass Spectrometry/standards , Triazoles/chemistry , Vitamin D/standards , Young Adult
15.
Clin Chem Lab Med ; 57(7): 1026-1034, 2019 06 26.
Article En | MEDLINE | ID: mdl-30838831

Introduction Dried blood spot (DBS) sample applications now encompass analytes related to clinical diagnosis, epidemiological studies, therapeutic drug monitoring, pharmacokinetic and toxicokinetic studies. Haematocrit (Hct) and haemoglobin (Hb) at very high or low concentrations may influence the accuracy of measurement quantification of the DBS sample. In this study, we aimed to predict the Hct of the punched DBS through primary spectrophotometric estimation of its haemoglobin-derivative (Hb-drv) content. Methods Formic acid solution was used to elute Hb-drv content of 3.2 mm spotted blood from its dry matrix. Direct spectrometry measurement was utilised to scan the extracted Hb-drv in the visible spectrum range of 520-600 nm. The linear relationship between an individual's Hct percentage and Hb-drv concentration was applied to estimate the Hct level of the blood spot. De-identified whole blood samples were used for the method development and evaluation studies. Results The Hb-drv estimation is valid in samples >2 months old. Method validation experiments DBS demonstrate linearity between 82.5 and 207.5 g/L, average coefficient of variation of 3.6% (intra-assay) and 7.7% (inter-assay), analytical recovery of 84%, and a high positive correlation (r=0.88) between Hb-drv and the original whole blood Hct. The Bland-Altman difference plot demonstrates a mean difference of 2.4% between the calculated DBS Hct and the directly measured Hct from fresh whole bloods. Conclusions We have successfully developed a simple Hb-drv method to estimate Hct in aged DBS samples. This method can be incorporated into DBS analytical work-flow for the in-situ estimation of Hct and subsequent correction of the analyte of interest as required.


Dried Blood Spot Testing/methods , Hemoglobins/analysis , Adolescent , Adult , Aged , Aged, 80 and over , Calibration , Child , Child, Preschool , Formates/chemistry , Hematocrit/standards , Hemoglobins/standards , Humans , Infant , Middle Aged , Quality Control , Reproducibility of Results , Spectrophotometry , Time Factors , Young Adult
17.
EJIFCC ; 27(4): 288-317, 2016 Dec.
Article En | MEDLINE | ID: mdl-28149263

INTRODUCTION: Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. METHODS: To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; "blood spot" and "mass spectrometry"; while excluding "newborn"; and "neonate". In addition, databases were restricted to English language and human specific. There was no time period limit applied. RESULTS: As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. CONCLUSIONS: DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required.

...